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This paper deals with active optimal vibration attenuation of elastic structures modeled by finite elements. The
system’s equations are linear with potentially large numbers of degrees of freedom, whereas the minimized
performance index is quadratic. The problem is formulated in modal space so that the dimension of the problem can
be limited to controlling significant modes only. Their number is considered greater than the number of independent
discrete actuators, making the system underactuated. The constraints resulting from underactuation are
represented by the matrix of constraints that couples the modal controls. This matrix, which plays an important role
in predicting the systems controllability, is obtained by adding a set of dummy actuators. The modal variables are in
turn coupled via second-order nonholonomic constraints, which are satisfied with the help of time-dependent
Lagrange multipliers. The optimality equations for the problem are derived in a compact form and solved by
applying symbolic differential operators. The procedure, which applies standard finite element and mathematical
software, renders the optimal actuation forces and the response of all controlled modes, or any selected degrees of
freedom, for the entire control process. Two simulation examples are presented to illustrate the approach’s details
and the use of controllability indicators derived from the matrix of constraints.

Nomenclature

Ala;] = normalized matrix of constraints

AL A, = partition of matrix A

a = coefficient weighting strain energy in the
performance index

B = actuators’ placement matrix

B = matrix relating the actuators to modal controls for

~ fully actuated systems

B = transfer matrix (from modal controls to actuators)

~ for fully actuated systems

B, = pseudotransfer matrix for underactuated systems

B’ = matrix relating the actuators to modal controls for
the systems with dummy actuators

b = coefficient weighting kinetic energy in the
performance index

C = Rayleigh damping matrix

c = coefficient weighting power of actuators in the
performance index

¢ij . . = integration constants

D, D;;, D;; = differential operators

dy = displacement of node i in direction k

E. E,E; = differential operators

F = vector of nodal forces

F, = vector of forces in actuators

F, = vector of forces in dummy actuators

G = gain matrix

H = augmented Hamiltonian

J = performance index

K = stiffness matrix

M = mass matrix

n = number of degrees of freedom

n, = number of independent actuators

Received 30 July 2008; revision received 29 January 2009; accepted for
publication 10 September 2009. Copyright © 2009 by the American Institute
of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0001-1452/09 and $10.00 in
correspondence with the CCC.

*Graduate Student, Department of Mechanical Engineering (Correspond-
ing Author).

"Professor, Department
Szyszkowski@usask.ca.

of Mechanical Engineering, Walerian.

2821

n, = number of controlled modes

n, = number of redundant modes (or constraints)

P, P, = vector of costates

04, 0,, R = diagonal matrices in performance index

£ = effective settling time for k frequency

U = vector of modal controls

u,U, = independent and redundant modal controls
= vector of degrees of freedom

oy, Bi = roots of characteristic equation

n = vector of modal variables

Nas 1N = independent and redundant modal variables

A K = rate and effort controllability indicators

& = damping ratio for frequency i

o; = modal shapes

Q = diagonal matrix of ordered frequencies

w; = frequency of mode i

I. Introduction

ECHANICAL systems with fewer actuators than the number

of the degrees of freedom (DOF) are referred to as under-
actuated [1-4]. Thus, any vibrating structural system with contin-
uous elastic members (and, theoretically, infinite DOF) controlled by
discrete actuators is underactuated. When such systems are modeled
using the finite element (FE) method, the number of DOF, though
finite, is usually very large in comparison with the number of actu-
ators. Many structural systems can be analyzed by the modal super-
position method, which provides sufficient accuracy by considering
arelatively small number of modes [5] to be referred to as significant.
The problem is still underactuated if the number of significant modes
(output size), representing the system’s generalized DOF, is greater
than the number of actuators (input size).

The DOF of an underactuated system are coupled by non-
integrable (nonholonomic) constraints arising from the equations of
motion, which impose some restrictions on its possible movements.
Also, underactuation complicates the inverse dynamics needed to
determine actuation forces because only trajectories that satisfy the
nonintegrable constraints are physically realizable. Generally, con-
trol of underactuated systems is associated with the so-called
nonminimum phase features, leading to unbounded behaviors [6,7].
This is mostly due to the inverse dynamics becoming unstable
(i.e., generating unstable zeros) when attempting to follow desired
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trajectories that do not satisfy the constraints resulting from
underactuation [8].

To avoid the unstable inverse dynamics when analyzing
underactuated systems, the noncausal methods were proposed and
applied mainly to flexible manipulators in [9-11]. However, these
methods were somewhat ‘“nonphysical” and demonstrated ques-
tionable convergence (in fact, the presence and consequences of the
nonholonomic constraints appear to have been overlooked in these
papers).

Some underactuated problems with passive joints, related mostly
to tracking problems, have been analyzed by first removing the
redundant DOF and then solving the reduced fully actuated
problems, with a number of actuators controlling the same number of
independent DOF [12-18]. For fully actuated problems, the inde-
pendent modal space control (IMSC) method may be applied, with
its main advantage being that each modal variable is directly related
to a corresponding independent modal control [19]. In these cases,
the solution involves the “input space” because the problem size was
reduced to the input size. This approach is limited to cases in which
the elimination of redundant variables is possible (exactly or
approximately), and it typically requires extensive analytical effort.

The method of active optimal vibration attenuation of elastic
structures presented in this paper obtains solutions in the “output
space” with the problem size equal to the number of controlled
modes. Instead of attempting to eliminate redundant modes (or
redundant DOF) to make their total number equal to the number of
actuators, “dummy” actuators are added to make the total number of
actuators equal to the number of significant modes. The dummy
actuators are subsequently eliminated by applying the constraints,
which are nonholonomic in terms of the modal variables, but
algebraic when imposed on the modal controls. A matrix of con-
straints is defined for a particular configuration of actuators, with its
terms containing information on the system’s controllability and
attenuation characteristics. The constraints are satisfied with the use
of time-dependent Lagrange multipliers. Optimality equations are
derived as a set of coupled differential equations involving all the
modal variables and Lagrange multipliers. These equations are then
solved by applying symbolic operators to provide the optimal input
(actuation forces) and output (system response). Such an approach
can be referred to as the constrained modal space optimal control
(CMSOC) to distinguish it from the IMSC method. Finally, the
solution can be verified by directly applying the actuation forces to
the FE model of the system (which may contain a much larger
number of modes than that considered in the control).

Because the constraints due to underactuation are always satisfied,
the problem of unstable inverse dynamics is formally eliminated. The
effectiveness of particular actuator locations on controlling a parti-
cular number of vibration modes, or the controllability of the system,
can be evaluated before simulating the control process. In particular,
in the case of poor controllability, the CMSOC can predict whether
the system will respond with excessively high actuation forces or
very slow rates of attenuation in certain modes.

The basic steps of our approach are demonstrated on a 2-DOF
problem analyzed in example I in Sec. V. Example II, in Sec. VI,
tackles a 120-DOF problem that focuses more on the system’s
controllability, which can be evaluated at the early stage of the
simulation by using certain numerical indicators derived from the
matrix of constraints.

II. Problem Formulation

The optimal active vibration control of discrete or continuous
elastic mechanical systems, represented by FE models with sufficient
DOF, is analyzed. It is assumed that the equations of motion for the
system take the following form:

MX +CX+KX=BF,()=F 1)
where M,C, and K are the constant mass, natural damping, and

stiffness matrices, respectively. The actuation force vector with n,,
independent components is denoted by F,(¢). The system’s DOF are

represented by vector X with n components (typically n, < n).
Matrix B (n x n,) assigns the actuation forces to the DOF, and F is
the corresponding nodal force vector. Formally, n, actuation forces
are to control n DOF describing the system’s motion, and so there
mustbe n, = n — n, additional constraints to be satisfied by all DOF.

The objective is to apply actuation forces as effectively as possible
to eliminate vibration energy. Such a task can be formulated in terms
of minimizing the performance index defined as follows:

1 [oo . .
J :E/ (aX"KX + bX"MX + CFTK*IF) dt - min (2)

Weighting coefficients a, b, and c are assigned to the system’s elastic
energy (potential), kinetic energy, and the work (or power) of the
actuation forces, respectively. Such a quadratic performance index is
routinely used in vibration control of flexible structures [20].

Equations (1) and (2) formally represent the linear quadratic
regulator problem with 2n states and n, controls. Note that one
would normally have to solve nonlinear algebraic Riccati equations
for the unknown terms of a symmetric matrix of size 2n, or 2n> + n
unknowns altogether, meaning that the problem presented in ex-
ample II would have 28,920 unknowns, which is prohibitively large
for any numerical handling [20]. Our approach does not use Riccati’s
equations at all.

The problem defined by Eqs. (1) and (2) can be mapped into the
modal space, where modal frequencies w; and corresponding
modal shapes ¢; are the solutions of the eigenvalues problem
(K — w?M)¢; =0. The modal shapes matrix ¢ =[¢;,...,d,]
satisfies the following orthogonality conditions:

PTMp=1 (3a)

P Kp=Q (3b)

where [ is a unit matrix, and €2 is a diagonal matrix of ordered
frequencies with the terms Q;; = w?.

Vectors X and F in Eqgs. (1) and (2) are replaced by vectors of
modal variables 1 and modal forces U, respectively, through the

following transformations:

X=¢n (4a)

U=¢'F (4b)

With C assumed as a Rayleigh matrix, the equations of motion (1)
become uncoupled in modal space, taking the following form:

lij+An+Qn=U or ij+ 25w +win = u;
i=1,2,... ®)

where A;; =2{; and {; = ¢'C¢;/(2w;) are passive modal
damping ratios. The numbers of modal variables and modal controls
in Eq. (5) are identical, so that the direct and inverse mapping
between the controls U and variables 7 is always possible in the
modal space.

Substituting Eqs. (4a) and (4b) into Eq. (2) and using Egs. (3a) and
(3b), the performance index is transformed into

Lo o
=3 [Cwrom+iron s vkoe ©

The new weighting matrices in the transformed performance index
(6) are diagonal and equal to Qd =aQ, QU =bl,and R = cQ".
Equations of motion (5) and performance index (6) in the modal
space are formally equivalent to Eqs. (1) and (2), respectively (the
latter define the problem in terms of DOF). The benefit of using
modal space in computational dynamics lies in the possibility of
obtaining acceptable solutions for systems with a large number of
DOF (or continuous systems) by considering only n,, significant
modes, where n, < n (see [5] for physical and numerical
justifications). The number of significant modes that might be
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required in modeling a structure is generally problem related and
depends mainly on its physical characteristics, the spatial
distribution, and the frequency content of the loading.

The first n, significant modal variables, which might be viewed as
controlled directly by n, independent actuators, are referred to as
independent, whereas the remaining n, = n,, — n, modal variables,
as controlled indirectly, are referred to as redundant. Redundant
variables are related to the independent ones by 7, constraints, which
are discussed in detail later in this section.

Because only the first n,, vibration modes are considered
significant, the reduced modal shape matrix ¢ = [¢, ..., ¢, ]ofsize
n x n,, is required in the transformations (4a) and (4b). It is assumed
that the modal shape matrix g5 of sufficient size and accuracy is
available from the FE software (ANSYS was used for this purpose).

All n,, components of U driving the significant modes, for a given
vector F',, are obtained from

U = ¢'BF, = BF, 7)

L oap az ... ap,
1 axy ... ay,

also divided into a vector of independent modal controls U, =
[uy -+ wu,,]" and a vector of redundant modal controls
U, = [ty u, 7. Both controls are determined, but only
U, will be required for determining the actuation forces.

Because F; = 0, the rows in the lower partition of form (8) define
the set of n, constraints, linear in terms of U, which can be written in
the form of homogeneous equations:

h(uy,...,u,) =AU, +AU =AU =0 )

Matrix A =[A, A,]ofsize n, X n,,, to be referred to as the matrix
of constraints, may be fully populated with n.n, nonzero
coefficients a;;. However, because Eq. (9) is homogeneous, these
coefficients can be normalized such thata;; = 1and g, ; = Ofork > i
(left bottom corner) and ay,, 4144 =0 for 1 <k <n, —1 (right
upper corner). This gives the following form:

a1~"u+1
Dne P2n+2
(10)
an,,nu an,.n,,+1 an,.n“+2 ce an,,n,,,

The dimensions of matrix B = dETB are n,, x n,. Operation (7) is
always possible in the direct dynamics, but in control analysis vector
F, is to be determined (the inverse dynamics); therefore, Eq. (7) is
used in reverse order. Then this vector is to generate the modal
control vector U that in turn drives modal variable vector 7 and finally
the desired vector X of system DOF.

If the number of actuators n, is equal to the number of significant
modes n,, (fully actuated) the inversion of Eq. (7) requires a
nonsingular matrix B of dimensions n, x n, such that the vector of
actuation forces can be obtained from F, = B™'U. Therefore, matrix
B=8" , transferring the modal controls into actuator forces, can be
related to controllability because it directly implies whether or not the
actuators are capable of controlling all the modes that define the
system dynamics [recall that the modal controls can always be
mapped into the modal variables by applying Eq. (5)].

This reasoning can be extended to the underactuated system for
which n, <n,. The aforementioned n,=n, —n, additional
constraints for the system can be explicitly determined by sequen-
tially eliminating the n, components of vector F,, from Eq. (7) to
obtain the extra conditions to be satisfied by all n,, components of
vector U. Alternatively, these conditions can be obtained by adding
n, dummy (zero-value) actuators F, to the system’s n, real actuators
F,. The only restriction on dummy actuator placement is that the
corresponding square matrix B’ (of size n,, X n,,) is nonsingular.
With dummy actuators included, the new ().‘i‘/)’l can be calculated
and partitioned so that the inverse operation of Eq. (7) takes the
following form:

Fa _ (p\— _ éa Er Ua — Fa
PR A A R

The dimensions of square matrices B, and A, are n, X n, and
n, x n,, respectively. To be consistent with the division of the modal
variables into independent and redundant, vector U = [U!  UT|"is

Ay

This normalized form of A is independent of the selection of dummy
actuators because their role is only to facilitate the process of
eliminating F', from Eq. (7), as already mentioned. Hence, matrix A
represents the system’s configuration of real actuators and will be
used for evaluating its controllability.

Real actuation force vector F, may be generated from the full
modal control vector U =[U?  UT|” through the top partition of
form (8) (ie., F, = I§,,U,, + E,U,). However, using the constraint
(9) to eliminate U,, the actuation forces can be obtained solely in
terms of the components of independent modal control vector U, in
the following form:

F,=B,U, where B,=B,— B,A7'A, an

The dimensions of square matrix B, are n, x n,. This matrix, similar
to matrix A, is independent of the selection of dummy actuators. If a
problem is fully actuated (n,, = n,), then B, = B. Equation (11)
requires the nonsingularity of matrix A,; otherwise. Eq. (9) cannot be
used to determine the redundant controls in terms of the independent
controls. Matrix B,,, referred to as the pseudotransfer matrix because
it has a similar physical interpretation as matrix B for fully actuated
systems [see Eq. (7)], must also be nonsingular. More details about
obtaining matrices A and B, are givenin Sec. V, in which example Lis
presented.

Matrices A, and B,, can be considered indicators of controllability.
Thus, the following two numerical measures, A and «, referred to as
the rate and effort parameters, respectively, are adopted to reflect
control performance (or the effectiveness of certain actuators’
locations):

A =|detA,| (12a)

k= |detB,| (12b)

The first parameter reflects the rate of attenuating the system’s
disturbances, whereas the second is related to the actuation forces
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required in the process. Such “physical® interpretations of these
parameters will be illustrated in Sec. VI, in which example II is
presented.

The controllability parameters can be used only to compare
different configurations of actuators for a particular mechanical
system. Note that matrix A, in Eq. (12a), which represents the last n,.
columns of the normalized matrix A in Eq. (10), is always triangular
sothatdetA, = ay, 1 X a2 X -+ X a,_, .ldeally the best rate
of attenuation of all modes is achieved if all nonzero elements of
matrix A, have a value of unity, and so A = |detA,| = 1. This is
because for such locations of actuators the redundant modal controls
will have similar magnitudes as the independent modal controls.
Consequently, in the CMSOC, the redundant modal variables will be
attenuated at a similar rate as the independent modal variables, which
in turn are attenuated according to the IMSC scheme.

Actuator locations with smaller values of effort parameter « will
generally have smaller maximum force requirements. This is because
the independent modal controls are determined first, irrespective of
actuator positioning, and next mapped into the actuation forces.

Formally, the equations of dynamics (5), with constraints (9), and
performance index (6) completely define the optimization problem
with n, independent actuators (the input size) in the n,,-dimensional
modal space (the output size). Such problems can be solved by
applying the optimality conditions, which are derived next.

III. Optimality Equations

The optimality conditions for the problem defined by Eqs. (5) and
(6) and constraint (9) will be derived from Pontryagin’s principle.
Treating n and 7 as vectors of independent state variables, the
augmented Hamiltonian can be written as follows:

H =" 0m + i" Qi + UTRU +T) + PLjj
+ PI(—A) — Qn+ U) +vTAU (13)

Vectors P, and P, are standard costates related to the states (1 and 7,
respectively). Vector v’ = [v; v, | represents the set of time-
dependent Lagrange multipliers introduced to enforce the constraints
(9). Applying the Pontryagin formalism, the costate equations for the
problem are obtained in the following form:

P,=—0H/dn= Q0+ QP, (14a)

P,=—0H/d = 0,1~ P, + AP, (14b)
The Hamiltonian is stationary with respect to modal control if
OH/dU = —RU + P, + ATv =0 (15)
Substituting Eq. (5) into Eq. (15) renders
P, = R(Iii + Afy + Q2n) — ATv (16)
Substituting Eq. (16) into Eq. (14b) yields
Py = Qi — R(Iij + Aij + 1) + AR + A + Q1)
+ATH— AATY a7
Finally, substituting Eq. (17) into Eq. (14a) gives
Rij+QQR — 0, — RA%)ij + (RQ? + Q)1
—(AT6— AATY+ QATY) =0 (18)

Equation (18) represents the set of conditions required for optimal
attenuation. For fully actuated systems (n, = n,,), the last bracketed
term in Eq. (18) is absent and modal variables 1 become uncoupled
(uncoupled optimality equations were dealt with in [21,22]). For
underactuated systems, the n,, equations in set (18) contain ,, modal
variables (n, independent variables 1, and n, redundant variables 1,.)
and n, unknown Lagrange multipliers. To solve for all n,, + n,

unknown functions in vectors 7 and v, Eq. (18) must be augmented
by n, equations of constraints (9). These constraints, after substi-
tuting Eq. (3), take the following differential form in terms of modal
variables:

AU = A(lii + Af + Q) =0 (19)

The modal variables in Eq. (19) are coupled by higher time
derivatives. Unlike the independent and redundant components of
controls U, related via Eq. (9), the independent components of modal
variables 71, cannot be separated analytically from the redundant
components of 7). Therefore, the constraints (19) are nonholonomic.

The set of n,, + n, equations in Egs. (18) and (19) contain n,,
modal variables in vector n and n, Lagrange multipliers in vector v.
All n,, + n, unknown functions can be determined provided that
4n,, boundary conditions, imposed on 7,, components of vector 7,
are available. Formally, only the independent modes are required to
determine the actuation forces (from F, = B, (Iij, + A7n, + 1,)),
whereas all the modes are needed to determine any particular DOF
(from X = ¢n). The details of the solution method are discussed in
Sec. IV.

Note that the system’s constraints (19) resulting from under-
actuation will always be met in the CMSOC approach, and that the
actuators are forced to control all the modes involved. Also, the paths
that are specified by the end points will be determined automatically
from Eqgs. (18) and (19). This problem is somewhat different than
solving the problems of controlling underactuated systems to follow
the assumed paths (that may or may not satisfy the system’s
constraints) as presented in [23,24].

IV. Solution Method

Using the symbolic differential operator D" = d"/dt", Eq. (18)
can be written as follows:

En =Y by, i=1..n, 20)
j=1

where

E; = coi*D* + [2¢(1 — 283 — b]D? + (¢ + a)w?

A 2 2
D;; = a;;(D* — 2§;w;D + ;)

In turn, Eq. (19) becomes

Ny

Z D~ijni =0
i=1

j=1-n, @1

where
D ;= a;(D* 4 2£w;D + w})

Operators E; are of the fourth order, whereas operators ﬁ, ; and D, 5
are of the second order. The set of Eqs. (20) and (21) can be written in
the following matrix form:

E, ... 0 —ﬁll —DA,,,V il
0 M _DA"ynl cee _D’\n,,,n, Mn,,
D~1 1 . D~nm 1 0 0 U
Dln,. D~nmnr 0 0 Up,
——
L E JL r U
=EY=0 (22)
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Matrix E is of size n, = n, + n,,, and vector Y contains all the
unknown modal variables and Lagrange multipliers. Each
component of Y in Eq. (22) must satisfy the following condition:

detE-Y,=E-Y,=0 (23)

Operator E =detE can always be found for known operators E;,
ﬁi ;» and D~,-_/-. Conveniently, Eq. (23) can be solved by symbolic
mathematical software. The MAPLE program was used in the
examples to follow.

Note that in Eq. (22) the upper-left portion of matrix E is diagonal,
whereas the lower right portion consists of zero terms. Consequently,
the order of E is always 4n,, (i.e., E=D%n +.. -), independent of
the number of Lagrange multipliers. For example, the explicit forms
of this operator for a few selected cases with different numbers of n,,,
modes and n, actuators are

E=ED,D, +ED,D,, n,=2 and n,=1

E = EIDAZID~21DA32D~32 + E2D11511D32532

+ E;Dy, Dy Dy, Dy, n,=3 and n,=1

E = E\EE,D; Dy + E\E;E,Dy Dy,

+E2E3E4l§11511, n,, =4 and n, = 3

Each term in E is a product of n, operators E; and n, pairs bi jD~l~ J-
(n, = n,, — n,). For fully actuated problems, for which n. = 0 (all
a;; = 0), operator E becomes

E=E, -E,---E, =0 (24)

Once E in Eq. (23) is determined, the corresponding characteristic
equation can be obtained by substituting D" — " to obtain a 4n1-
order polynomial in the form r*w» 4+ ...=0. The roots of this
polynomial are r, = +o +iff, (k=1,...,n,), where o, and S,
are real nonnegative numbers. The general solution to each of the
unknown functions Y; in Eq. (22) consists of the superposition of
4n,, exponential functions with complex exponents r;. For example,
ifa; and B, are nonmultiple, then for any Y; fourindependent solving
functions are generated in the following form:

e~ (cy,sin it + ci;cos Bir) and et (¢} sin Byt + cf; cos Bit)
(25)

The unknown integration constants c} e ct » which are discussed
in more detail in the Appendix, are 4n,,n, in total. These additional
constants must be chosen such that each generated solution Y;
satisfies the original Eqs. (18) and (19). This can be secured by
directly substituting and comparing the terms of similar solving
functions in these equations, which yields 4n,,n, additional linear
algebraic equations, 4n,,n,, from Eq. (18) and 4n,,n, from Eq. (19).

Any set of 4n,, linear algebraic equations, obtained from one
differential equation in Eq. (18) or Eq. (19), must be replaced by a set
of 4n,, equations representing the initial and final boundary
conditions for the modal variable vector 7 to obtain a complete set of
linearly independent algebraic equations. Conveniently, all the
required 4n,,n, integration constants can be determined automati-
cally from the MAPLE program.

Any disturbances may be assumed in the form of the initial
conditions X(0) = X, and X(0) = X,. These conditions can be con-
verted into initial conditions for the modal variables by applying
Eqgs. (4a) and (3a) to obtain

n(0) = ¢" MX(0) =1,

To represent the system at rest, with vibrations eliminated, the final
conditions take the following form:

1(0) = " MX©0) =17,  (26)

X(00) = X(00) =0 or 7(00) = 1)(00) =0 @7

Equations (27) assume an infinite maneuver time, which is routinely
done to formulate the so-called time-invariant control problems.
Constants c}; and ¢}; in Eq. (25) must be zero for such problems due
to conditions (27). Therefore, the solutions to Eqs. (23) take the
following form:

Ny

Y, = Z e~ (cy; sin Byt + ¢ cos 1) j=1--n, (28)

k=1

where Y; represents either n; or v;. Now only 2n,,n, integration
constants ¢} ;and 2 , are to be determined. Parameters f; and o can,
respectively, be interpreted as the frequency and active damping
associated with the kth controlled mode. Any vibrations with the
frequency f; will be reduced to about 3% of the initial value after
oy 88 > 3.5, where # denotes an “effective” settling time for this
particular frequency (i.e., £ = 3.5/a;). Also, the active damping
ratio of the kth mode is defined as &, = «, /. However, because the
modes are coupled, the values of «; or £ better characterize the
attenuation of a particular mode than the value of ;.

The complete CMSOC procedure requires some interaction
between the FE software (ANSYS) and the symbolic math software
(MAPLE). The ANSYS program provides the characteristic param-
eters of the mechanical system (w;, ¢;) and the terms of matrix A (for
simpler structures, these parameters may be determined analyti-
cally). Next, MAPLE determines operator £ = det E, solves for the
roots of its characteristic equation, and generates the corresponding
solution functions (28). These functions are substituted back into
Eqgs. (18) and (19) to group the coefficients of similar terms to obtain
the set of additional equations, which together with the boundary
conditions (26) and (27) determine the complete set of required
integration constants and modal variable vector 1 (more details are
given in the Appendix).

Optimal modal control vector U (with independent and redundant
components) is obtained by substituting modal variables into Eq. (5),
whereas actuation forces are obtained from Eq. (11). Finally, the
trajectory of any DOF of interest can be determined from Eq. (4a).
This way, the process of optimally controlling vibrations can be fully
simulated starting from any assumed set of disturbances to the
configuration at rest. More details of this procedure are presented in
the numerical examples.

Also, it can be shown that the actuation forces in the CMSOC
method can be expressed as a function of the state variables:

Fa=—G-[’7] (29)
n

where the terms of the gain matrix G of size n, x 2n,, can be
determined by comparing similar functions defining the forces and
the state, similar to how it was done for fully actuated systems in [22].
The details of determining matrix G are not discussed further in this

paper.
Note that, for fully actuated systems, operator (24) is a series of
independent fourth order operators E;, where i =1:--n,,. Thus,

additional differentiations are avoided and, consequently, no addi-
tional integration constants are generated. Solving each equation
E; = Oleads to four integration constants to be obtained directly from
four boundary conditions (26) and (27) for the ith mode. This
confirms that in the CMSOC procedure the modal variables of fully
actuated problems can be solved independently, one by one, as in the
IMSC approach [19]).

V. Example I: Discrete Two-Mass Suspension Problem

The first numerical example is a simple discrete two-mass
problem, which is presented to familiarize the reader with the basic
steps of the procedure. Most of the operations for this problem can be
recreated without using computer software.

The discrete underactuated system with two DOF [two modes of
vibration (n,, = 2)] and controlled by a single actuator (n, =1,
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n, = 1), is shown in Fig. 1. The system has been used to rudimen-
tarily represent the active suspension of a car [16], and so it will be
referred to as the suspension problem.

A quarter of the car’s mass is denoted by m,, and the mass of one
wheel with attachments is denoted by m;. The tire stiffness is
represented by &, and the stiffness of a spring in the shock absorber is
represented by k, (typically m, > m, and k, < k;). F, represents
the real actuator force, and F'; = 0 is adummy actuator’s force [these
two actuators ensure the nonsingularity of matrix Bin Eq. (8)].

The matrices and the nodal force vectors, as defined in Eq. (1), are

_|m _|kitk —ky _|-1 1| F,
M_[ mz] K_[ _k2 k2 F= 1 0 Fd
The following numerical values are assumed for the analysis:

m; =40kg m,=200kg k;=2354kN/m k,=39.24kN/m

Modal analysis renders the following frequencies of free vibrations
and modal shape matrix:

w, = 12.94 rad/s w, = 83.04 rad/s (30a)
~ 0.01033  0.15778
$=9¢= [0.07056 —0‘00462] (300)

Initially the system is at rest in the position x;(0) =4 mm and
x,(0) = 5 mm. The corresponding four boundary conditions for the
modal variables are

m(0)=0.07221  1,(0) = 0.02062 (la)

11(0)=0 0)=0 (31b)
For actuators F,, and F;, matrix B’ in Eq. (8) is
N p 0.01033  0.07056 -1 1
B=¢"B=
0.1578 —0.004620 1 0

[ 0.06023 0.01033}

—0.1624  0.1578

Applying Eq. (8) yields

R
Fy A, A U
14.11 —0.9241 F,
- |:14.53 5.387 j||:u2:| |: 0 j|

o A
my

Fig. 1 Suspension system.

The second row of this operation gives the constraint matrix
(A=[14.53 5.387]), which can be normalized according to
Eq. (10) to render

A=[1 0.3709] (32)

The elements of this matrix are denoted as a;; = 1 and a;, = 0.3709.
Note the latter term represents a one-term matrix A,.

The actuator force may be written according to Eq. (11) in the
following form:

F, = 16.60u, 33)

This equation reflects the relationship between the actuator force and
the independent modal control [the numerical value 16.60 represents
a one-term matrix Ea in Eq. (11)].

It can easily be verified that identical A and B, will be obtained if
the dummy actuator is positioned, for example, between mass m, and
the ground.

The controllability parameters, given by Eqgs. (12a) and (12b), are

A =0.3709 k =16.60 (34)
These parameters are of limited interest in this problem, as the
number of possible single-actuator configurations is small, but they
are shown here for completeness. The next example, in Sec. VI, will
discuss them in greater detail.

The assumed optimization parameters in the performance index
(2) are a = b = ¢ = 1, making the diagonal weighting matrices in
the modal performance index (6) equal to

Qdii =w} Qvii =1 Iéu =1/w}

Operators given by Egs. (20) and (21) take the following form:
E; = D*w;? + D* + 2w}

and 13,-]- = D~,-j =a;;(D* + w})

Substituting into Eq. (22) and solving for Ein Eq. (23), we obtain the
eighth-order operator

E = D},E, + D},E,

The roots of this characteristic equation are r;
2), where

:iakilﬂk(k: l,

a;=7574 «,=2236 B;=12.82 B,=82.87 (35)
Note that 8; =~ w,. Also note that for this case o, ~ 3¢, indicating
that the second frequency will be eliminated at a faster rate than the
first (the modal active damping ratios formally are &, = 0.5909 and
& =0.2722).

For the time-invariant problem, each unknown variable contains
four independent terms (each term corresponding to a distinct root of
the characteristic equation) and four integration constants. Unknown
modal variables n, = Y, 7, = Y,, and Lagrange multiplier v; = Y;
thus take the form [see (28)]

Y; = e "[c];sin(B1) + c}; cos(B1)]
+ e“"?’[céj sin(B,1) + ng cos(B,1)] (36)

In total, there are 12 integration constants, ¢! i ch > 2 j»and 3 =1,
2,3),needed to describe 1, 17,, and v, . To find their numerical values,
an equal number of independent algebraic equations are required.
These equations are generated as follows.

For this problem, the optimality equation (18) is (n,, = 2)

i 4 o + 20in; = a0} (0 4 o) i=1,2 37
The nonholonomic constraint (19) is (n, = 1)
ay, (i, + winy) + ap (i, + @3m,) =0 (38)
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Substituting 1, 17,, and v; [in the form of Eq. (36)] into Eqs. (37) and
(38) and comparing similar terms yields n, = n,, + 1, = 3 sets of
homogeneous linear equations (with constants cij as unknowns),
each set containing 2n,, = 4 algebraic equations, which all together
yields 12 homogeneous linear equations. A nontrivial solution
for ¢} ; 1s obtained by ignoring one set of equations [either from
Eq. (37) or Eq. (38)] and replacing it with the set of initial boundary
conditions (31a).

The calculated integration constants for the suspension problem
[see (Al)] are substituted back into Eq. (36) to obtain the modal
variables, which are plotted in Figs. 2a and 2b. Both frequencies, with
the periods 7, = 0.49 sand T, = 0.076 s, contribute to the response
of each modal variable; this is particularly visible for the second
modal variable in Figs. 2a and 2b.

The histograms of the DOF are plotted in Figs. 3a and 3b, in which
it appears that x, is dominated by the second frequency and x, is
dominated by the first frequency. The second frequency oscillations
disappear faster than oscillations with the first frequency, because
o, > ;. The settling times (i.e., 1f = 3.5/a;) are ' = 0.462 s and
58 = 0.156 s, which is apparent in Figs. 2-5.

2827

The modal controls, plotted in Fig. 4, satisfy the constraint equa-
tion AU = 0 [where A is given in Eq. (32)] or, according to Eq. (9),
h(Ml, Mz) = U + 03709M2 = O

The actuation force to control this 2-DOF system is obtained from
Eq. (33) and plotted in Fig. 5. The maximum required actuation force
is about 270 N. Note how the frequencies of both participating modes
affectits variation in time (though for # > #5 only the frequency of the
first mode is significant in the variation of F,).

VI. Example II: Distributed-Mass Frame Problem

The second example is a continuous system that requires the use of
both FE and symbolic mathematics programs. The main purpose of
this example is to demonstrate the abilities of the CMSOC procedure
to predict the performance of particular configurations of the
actuators in the FE phase of simulation. These predictions are then
verified in the control phase. Special attention will be paid to the
relationship between the magnitudes of the parameters of control-
lability, A and &, determined at the beginning of the simulation, and
the response characteristics of the controlled system. In particular,

006 0.024
7 . 0015
0.04 : o]
0.005]| #+—» ~0.076s
0, ~0.49s .
l__\ 0 W 03 04 05 06 07
o o2 030 05 0 oy U 1(s)
((s) 001
a) b)
Fig. 2 Modal variables as a function of time: a) n,, and b) 7,.
0.004 v, 0005
X m
[m]0.003 b} oo
0.002 0.0031
0.002
0.001
0.0011
n._
0 o ~0z" 03 04 05 08 07
0
t 01 \02 03~ 04 05 06 07
-0.001 © j 1(s)
a) b)
Fig. 3 Position of DOF as a function of time: a) x;, and b) x,.
B ;
u, 14 /\ u, 10
12
103
o \ A pal
FE ‘./ \
2
o0 02 Tos—ug 05 06 07 0T g 07 03 o4 05 06 07
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g ;
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Fig. 4 Modal controls as a function of time: a) u,;, and b) u,.
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Fig. 5 Optimal actuation force F, as a function of time.

note how either excessively long attenuation times (case 4) or
excessively large actuation force requirements (case 6) can be identi-
fied from these parameters.

A distributed-mass three-stage plane frame is shown in Fig. 6a. All
members are aluminum (E = 71.7 GPa, p = 2800 kg/m?) with a
cross-sectional area of 76 mm? (a mass of 0.2128 kg/m) and an area
moment of inertia of 4585 mm*. The topmost horizontal member
weighs 1 kg and is considered rigid.

The frame was modeled in ANSYS by two-dimensional beam
(five elements per member) and mass elements as a 120-DOF system.
The locations of all relevant nodes are indicated in the figure. The
horizontal and vertical displacements at node p are denoted by d¥
and df, respectively. The modal shapes of the four lowest vibration
modes, with frequencies w; (i = 1---4), are shown in Fig. 6b. The
attenuation of disturbance in the frame will be simulated for several
different numbers and configurations of actuators that actively
control three or four modes of vibrations. Actuators exert equal and
opposite axial forces along a line between any two points on the
frame where they are attached.

The actuator configurations as well as the number of modes n,, that
will be considered are indicated in Fig. 7. As mentioned, the focus of
this example is on the assessment and improvement of attenuation
performance through actuator configuration, and so in each case in
Fig. 7 the controllability parameters, A and «, will be of particular
interest. Note that nearly all cases can be analyzed by using the same
matrix B for the system, but differently assigning the actuators as real
and dummy. This indicates that the locations of dummy actuators,
though arbitrary, should be selected in the analysis in such a way that,
in searching for improved performance, they potentially may be
switched with the real ones.

27

Im 0, =27.57 o, =112.3m4

_,_.____,
]

A

b

r
o

a) b)

Fig. 6 Shown are the following: a) the frame, and b) its first four modal
shapes and frequencies.

©,=22007 o, =461.07%

27, _F
18 7 F2 Fz 7 F2
y 13 2 13
! - 12
Casel n, =3 Case2 n, =3 Case 3 n, =3 Case4 n, =4
; F, 7 15 F, 7 K
2 R 2 13
25 -,
12
Case 5 n, =4 Case 6 n, =3 Case7 n, =3

Fig. 7 Actuator configurations and number of modes n, to be
considered.

An initial disturbance is assumed in terms of modal variables as

ﬁi(o)zo
i=1---4

7.(0) = 0.05
1,(0) = 0.005

15(0) = 0.0045

(39)
n4(0) = 0.004
Conditions (39), when mapped into the DOF space, correspond to the
initial displacements:

d¥=0.03801m d]=0.02838m d?*=-0.005740m (40)
As in the first example, the assumed optimization parameters in the
performance index (2) are a = b = ¢ = 1. The modal analysis for
this problem was performed using the ANSYS software.

Upon inspection of the modal shapes in Fig. 6, it may be concluded
that one actuator attached at corner nodes, as in cases 1-3, should be
able to control the first three vibration modes reasonably well.
However, some difficulty might be expected when trying to control
the fourth vibration mode shape in all cases (with the exception of
case 5), as the actuators are located at almost stationary corner nodes
of the fourth mode. This will be demonstrated in case 4, in which the
actuator from case 2 is used to control all four modes. The actuator in
case 5 should control the fourth mode better, due to its slightly shifted
location away from the corner nodes. Case 6 offers another example
of poor actuator positioning for controlling three modes of vibration,
but for a somewhat more complicated reason. The configuration in
case 7, which “combines” cases 2 and 3, should significantly improve
the control over case 6. These somewhat intuitive observations are to
be verified by the method proposed by performing the following
simulations.

A. Case 1 Actuator F; to Control Three Modes

The first three modes of vibration are to be controlled by actuator
F| located between nodes 18 and 27 (n, =1, n,, =3, n, =2, and
n,=5). If F, and F; (between nodes 7 and 13 and 2 and 12,
respectively) are selected as dummy actuators, then Eq. (8) takes the
following form (all the numbers were obtained from the ANSYS
modal analysis):

R
=(B)'U=
Fy A, A || U,

—1.341 0.6895 —0.3246 u F
=| —1.871 0.1265 0.3834 u, | =10 (41)
—2.097 —0.6688 —0.2668 us 0

The lower partition (two bottom rows) of Eq. (41) forms the
constraint matrix, that when normalized to the form defined in
Eq. (10) becomes

1 0.1708
A= [ 1 0.8592] “42)
According to Eq. (11), the actuation force can be expressed as
F, =B, U, = —7.588u, (43)
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The controllability parameters, given by (12a) and (12b), are
A =0.1468 Kk =17.588 (44)

Recall that rate indicator A should have a value “close” to unity,
indicating that a given actuator configuration can quickly attenuate
all controlled modes. Also, the effort parameter should have a
“small” value, so that the actuator in this configuration will have
small maximum force requirements. The meanings of close and
small are relative and will be clarified later in this section.

The explicit forms of the optimality and constraint Egs. (18) and
(19) are

77[ + i) + 2‘0?7)1'

=a,,0} (¥, + 0fvy) + apwf (¥, + 0fv,)  i=1,2,3 (45a)

a;1 (il + oiny) + ap (il + 03my) + a; (i, + @3m,)
=0 j=12 (45b)

The roots of the characteristic equation (r, = £o; £ if;), given by
Eq. (23), are calculated as

a, =7.308
B, =27.68

ay =50.44
B, =116.6

a3 =62.20
By =213.7 (46)

Note that again f8; &~ w;. The corresponding modal active damping
ratios are & =0.2640, & =0.4324, and & =0.2911, and the
effective settling times for the three controlled modes are

£ =0.4789 s £ =0.06939 s £ =0.05627s  (47)
These settling times are reflected in Fig. 8, in which oscillations with
the second and third frequencies disappear after about 0.07 s, and
those with the first frequency after about 0.48 s.

Solving for the unknown 30 constants (2n,,n,, see comments in the
Appendix) enables the determination of all modal variables, modal
controls, actuation force, and the response of any DOF of interest.
Plots of some of these variables are shown in Fig. 8.

The uncontrolled fourth modal variable, given by n,(f)=
14(0) cos(wyt), is not shown. However, it is included in the DOF
responses, d2’, d7, and d2*. Because of its shape, the fourth mode (see
Fig. 6), which is unattenuated, hardly affects horizontal displace-
ments d27 and d] (Fig. 8h), but significantly impacts vertical dis-
placement df,“ (Fig. 8i). Actuation force F; has a peak value of
130.7 N (see Fig. 8g).
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00203040506
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Fig. 8 Histograms for case 1: a, b, ¢) of modal variables; d, e, f) modal
controls; g) actuation force; and h, i) displacements.

B. Case 2 Actuator F, to Control Three Modes

The first three modes of vibration are to be controlled by actuator
F, located between nodes 7 and 13 (n, =1, n,, =3, n, =2, and
n, =5). For this case, F| and F3; may be considered dummy
actuators; hence, Eq. (8) is identical to that used in case 1 [given in
Eq. (41)], only the first and second rows of (IEA?')‘1 are swapped,
rendering

[Fa} : [éa é’}[Ua}
=B)'U=
Fy A, A || U,

—1.871 0.1225  0.3834 u F,
=| —1341 0.6895 —0.3246 u, | =10 (48)
—2.097 —0.6688 —0.2668 us 0

By partitioning form (48), the pseudotransfer matrix and constraint
matrix are calculated by Eqgs. (10) and (11), respectively, to obtain

- 1 1.242
B,=-4212 A= [ ] _0.1379] (49)
The controllability parameters from (12a) and (12b) are
A=0.1713 k=4.212 (50)

Rate parameter A is slightly closer to unity, reflecting a marginal
improvement in the attenuation rate of the slowest mode. Also, effort
parameter k in Eq. (50) is slightly lower than in case 1, and so a
slightly smaller maximum force should be expected. In fact, as
shown in Fig. 9b, the actuation force F, has a peak value of 121.0 N,
in comparison with F"* = 130.7.

The roots (r, = oy £ if;) of Eq. (23) are

o, =1291
B, =27.51

a0, = 9.260
B, =112.6

s = 88.65
By =218.7 1)

The effective settling times are

£ =0.2712 s £ =0.3780 s £5=0.03950s (52)

C. Case 3 Actuator F; to Control Three Modes

Now consider controlling the frame’s first three modes of vibration
with actuator F3, located between nodes 2 and 12. For this case, F;
and F, may be considered dummy actuators and so Eq. (8) is also
identical to case 1 [given in Eq. (41)], with the first and third rows of
(B')~! swapped, giving

B
=B)'U=
Fy A, A ||l U,

—2.097 —0.6688 —0.2668 u F;
=| —1.871 0.1265 0.3834 u, | =10 (53)
—1.341 0.6895 —0.3246 us 0

The pseudotransfer matrix and constraint matrix become

- 1 —0.2723
Bo=-ss2 a=[t O] e
The controllability parameters are
A =0.2726 k=5.532 (55)

Rate parameter A is again slightly closer to unity thanin cases 1 and 2,
signaling that a marginal improvement in the slowest attenuation rate
is expected. Effort parameter « is of a similar magnitude to both
cases 1 and 2, and so a similar maximum force is expected in this
case. Accordingly, the maximum force for actuator F5 is 131.4 N.
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Fig. 9 Cases 1-3: optimal control forces (left) and DOF response (right).

The roots of Eq. (23) are (r;, = o, £ if;)

a; =10.74 o, =46.13 oy =45.56
B, =21.73 B, =114.0 B3 =216.9 (56)
And the corresponding settling times are
£ =0.3260 s 0.07670 s £% =0.07590 s (57)

The optimal control forces and the x-displacement response of node
7 (d?) for cases 1-3 are shown in Fig. 9 to compare the control efforts
and attenuation rates.

In case 1, the disturbance is eliminated in about 0.47 s, in case 2 it
takes about 0.38 s, and in case 3 it takes about 0.33 s. These settling
times correlate well with the values of rate parameter A, which takes a
value closer to unity for faster attenuation. In cases 1 and 3, the
second and third modes are attenuated quickly (in about 0.07 s),
whereas in case 2 the second mode is attenuated last (in about 0.38 s).
The control process requires actuation forces of similar magnitudes
with the maximum forces of 130.7 N in case 1, 121.0 N in case 2,
and 131.4 N in case 3, which is approximately correlated to the
effort parameter «. As can be observed, a single actuator attached
diagonally between opposite corner nodes of the frame, as in cases 1—
3, has good authority over the first three modes of vibration. In each
of these cases the controllability parameters were all of reasonably
similar magnitudes. Rate parameter A varied between 0.1468 and
0.2726, and effort parameter « varied between 4.212 and 7.588. Note
that the nondiagonal terms in matrices A (a;; for i # j) were close
to unity.

D. Case 4 Actuator F, to Control Four Modes

As mentioned already, the actuator positions in cases 1-3 should
have poor authority over the fourth mode of vibration. To
demonstrate this, actuator F,, attached at corners nodes 7 and 13 as in
case 2, will be used to control four modes of vibrations (n, =1,
n, =4, n,=3, and n, =7). One additional dummy actuator,
chosen between nodes 2 and 18 (location Fs5 in case 5 of Fig. 6b), is
included to write Eq. (8) in the following form:

0,037,
0029 |
d] 0014 o
ml 07 g7 703 0 T os o
Mogi] 070504 05 06
003y,
0.024 |,
a7 001y
0 RT T2 03 04 05 0B
003§}
0.029
d7 0.013 "\‘v
ml 0O 51 02 Zﬁt'a 04 05 0B
F, B, B, |[ U,
Fol A, allu,
M—3.249 —-0.01304 —0.1868 811.7 u;
—1.341 0.6895 —0.3246 —0.8639 x 107 Uy
- —2.097 —0.6688 —0.2668 —0.2854x 10~* U
L —1.378 —0.1394 —0.5702 811.7 Uy
-F,
0
= (58)
0
L O

The constraint matrix [from the lower partition of (58)] is normalized
to

1 1.242 0 0
A=1|0 1 —0.1379 0 (59)
0 0 1 —2296

Note that |as4| = 2296 > 1, an indication of poor control over the
fourth mode. In fact, matrix (59) requires that u, = —0.805u,,
uy = —5.84u,, and u, = —0.00254u,, indicating that the effort
assigned to the fourth modal control is much lower than that assigned
to other modal controls.

Equation (11) for case 4 is unchanged from case 2 [see Eq. (49)]
because the matrix reflects changes in the actuator configuration
only; thus, it is written as follows:

F,=F,=B,U, =—4212u, (60)
The controllability parameters from Eqs. (12a) and (12b) are
A=3932 k=4.212 (61)

Rate parameter A has increased three orders of magnitude from case 2
[see Eq. (50)], indicating a large expected increase in attenuation
time. Effort parameter « remains unchanged (because the same
actuator location is used) between cases 2 and 4, which should be
reflected in similar expected maximum actuator forces.

The roots (ry = o, £ i) of the characteristic equation from
Eq. (23) are



WOODS AND SZYSZKOWSKI 2831

o, =12.91
B, =27.51

ay =9.260
B, =112.6

a3 = 88.65
By =218.7

a, = 0.03663
Bs=461.0

The small value of o, indicates that the fourth mode of vibration is
attenuated very slowly. The corresponding settling times are

£F=02711s £7=03780s £T=0.03948s r=9556s

(63)

Despite the poor attenuation of the fourth mode, the other three
modes are attenuated at the same rate as in case 2.

In Figs. 10a and 10b, the response of the frame’s DOF, d7 and d3*,
are shown. The horizontal displacement d is only slightly affected
by the fourth mode due to its location in relation to the modal shape,
but the vertical displacement d§4 is very sensitive to this mode and
clearly shows poor attenuation of the fourth mode (95.6 s is needed to
eliminate these oscillations).

The optimal actuation force histograms shown in Figs. 10c and
10d (note the different time scales) are now dominated by the fourth
mode. In fact, after about 0.5 s only vibrations with the fourth natural
frequency (/461.0 rad/s) persist. The maximum force required by
actuator F, is about 330 N. Figure 10d confirms that the effective
settling time is about 5 = 95.6 s.

In conclusion, as expected, when control by a single actuator
placed between the corner nodes over the fourth mode is attempted, a
large value of the rate parameter A indicates a nearly uncontrollable
system. To reduce its value (to the level characterizing the attenuation
rate when controlling only the first three modes of vibration, for
example), a new configuration of the actuator with better authority
over all controlled modes is needed.

E. Case 5 Actuator F, to Control Four Modes

Actuator F4, located between nodes 7 and 25, should intuitively be
better suited to control the frame’s four modes of vibration. This
configuration is only a slight alteration from case 4, with the lower
end of the actuator moved to a location two elements away from node
13.

Dummy actuators are chosen as F, F,, and F3, and so Eq. (8)
takes the following form:

200

100 ‘

(V]

100 ’ H

-200-

-300+

)

M

—1.518-107% —1.537x107* —6.282x 107* —0.8944
—1.341 0.6895 —0.3246  5.472x107°
N —2.097 —0.6688 —0.2668 —0.02252
—1.870 0.1266 0.3838 —0.6715
U Fy
u, 0
% - (64)
us
Uy

The constraint matrix can be written in the normalized form as
follows:

1 1.490
A= 1 —0.1185 (65)

1 —0.9208

None of the terms in Eq. (65) is much greater than unity, and so the
effort assigned to each modal control is much more evenly
distributed than in case 4 [see Eq. (59)]. In fact, constraint matrix (65)
requires that u, = —0.671u,, u3 = —5.662u,, and uy; = —6.149u,
(whereas, for case 4, u, = 0.00254). The actuator force from
Eq. (11) is

F,=F,=B,U, = —5.495u, (66)

The controllability parameters from Eqgs. (12a) and (12b) for case 5
are
A =0.1626 Kk =5.495 (67)

The rate indicator A has decreased three orders of magnitude in
comparison to case 4 [see Eq. (61)], to a value much closer to unity. In
fact, this parameter has a value that would suggest the rate of
attenuation is somewhere in between that of cases 1 and 2; this is

0.004 1

0.002

ar vl
[m] ‘ ‘
-0.002
-0.004

b)

-200

-300
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Fig. 10 Case 4: a) response d’; b) response d?*; and c, d) actuation force F,.
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confirmed in Egs. (68) and (69). The parameter « is close in value to
previous cases, and so the maximum forces should not be expected to

change

The roots of the characteristic equation, given by Eq. (23), are

o, = 1242
B, =27.51

None of the «; values is small [unlike ¢, in Eq. (62)]; hence, the time
required to effectively attenuate each mode of vibration is relatively

greatly.

o, =7.484
B, = 1125

short. The effective settling times are

£ =0.2817s

The settling times for the first three modes are close in value to case 4
[see Eq. (63)]; however, the fourth mode is now quickly attenuated, in
about 0.04 s. Recall that this is achieved by relocating the lower end
attachment of actuator F', from the corner node 13 to the inner node

25.

The displacements d? andd2* are shown in Figs. 11a and 11b, and
the actuation force F, is shown in Fig. 11c. These plots contrast those
of case 4 (Fig. 10), in which the fourth mode was poorly controlled
(consequently, d?* was poorly attenuated). The maximum force
needed is about 240 N, and the disturbance is effectively eliminated

eff _

£r=0.4676s =

after £ = 0.4676 s.

By =2218

0.04432s
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a, =87.77

(68)

F. Case 6 Actuators F, and F5 to Control Three Modes

Two actuators are to control the frame’s first three modes of
vibration (n, =2, n,, =3, n, =1, and n, =4). Actuator F, is
located as in case 2, and a second actuator F’5 is located between

nodes 2 and 18. With actuator F', as a dummy, Eq. (8) becomes

F,
Fy

Mr—5.968 x 107 —1.903 x 107
—5.968 x 107  —1.903 x 107
—0.7019 0.8942
.
Fs
L O

The normalized constraint matrix (10) is

No element in this row matrix is significantly greater than unity,

A

[1

—1.274 0.3466]

—7.593 x 10°

Uy
—7.593 x 10° || u,
—0.2433 Uz
(70)
(71)

suggesting that reasonable attenuation rates are expected.

0.002
d7
[m]

-0.002

-0.004 1

a)

£ =0.03988 s
(69)

The actuation forces F, and F’s, as defined by Eq. (11), are
| ]
U

Now matrix B, contains terms of large magnitudes, indicating that
the modal controls will produce large actuation forces. Eight
significant digits are shown in Eq. (72) to verify that matrix B, is
nearly, but not exactly, singular.

For case 6, the control parameters from Eqgs. (12a) and (12b) are

—37,769, 742
—37,769, 738

=T

F =

a

—46,942, 466 F,
—46,942, 463 Fs

(72)

A =0.3466 K =74.46 x 10° (73)
Rate parameter A has a value closer to unity than any previous cases,
and so the attenuation rate of the slowest mode should be expected to
increase; this is confirmed in Eqs. (74) and (75). However, effort
parameter « is seven orders of magnitude larger than previous cases,
indicating that the maximum expected forces will greatly increase
(see Fig. 12¢).

The roots of the characteristic equation (r, = o, + if;) given
by Eq. (23) are

a, = 18.14
B, =27.07

a, = 26.09
B, =114.6

a; = 1326

Bz =213.5 (74)
This set of decay coefficients «; confirm that vibrations are
attenuated within a reasonable time; the settling times for particular
modes are

£7=0.1929 s £ =0.1342 s £ =0.02640s  (75)
The histograms of DOF d2’ and d?* are shown in Figs. 12a and 12b,
and actuation forces F, and Fs are plotted Fig. 12c. Vibrations are
attenuated more quickly than in cases 1-5 (#5f = 0.1929 s), but the
maximum forces required during the control period are about 2 GN,
greater by seven orders of magnitude than in previous cases. The
action of both actuators is indistinguishable in Fig. 12¢, but they are
indeed different. In fact, the difference between actuation forces,
F,—F5 shown in Fig. 12d, is somewhat similar to the action of F, in
case 2 (Fig. 9b). Despite the large forces (~2 GN) generated by each
individual actuator, the magnitude of (F,—Fs5)™* ~92 N is
comparable to F7'** ~ 121 N.

The cause of uncharacteristically large forces in case 6 can be
traced to the fact that the increase (decrease) in the distance between
nodes 2 and 18 is nearly identical to the decrease (increase) in the
distance between nodes 7 and 13 when the frame vibrates in the first
and second modes (see Fig. 6b). Therefore, actuator F5 essentially
neutralizes the action of F, toward vibration attenuation instead of
“helping” it. This, in turn, causes force F), to increase, followed by
increasing F5, and so on. Clearly, one of the actuators at these
locations should be considered redundant.

In general, any case of redundant actuators, reflected in excessive
actuation forces, will automatically produce a very large value of the
effort parameter « in Eq. (12b) (compare k = 74.46 x 10 for case 6
with k = 4.212 for case 2).

1 200
0.0259 |
0024 100
0.0153 4
0.013 N V.
4" 0005 1 U WY R R
[m] e .
o TS oy 1001l
ope] 01782703 04 JLJ
b) c)

Fig. 11 Case 5: a) response d7, b) response d2*, and c) actuation force F.
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Fig. 12 Case 6: a) response d?’, b) response d;*, c) actuation force F,, and d) actuation forces F,~F3s.
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The elements of this matrix suggest adequate control over all three

c)

G. Case 7 Actuators F, and F; to Control Three Modes
In case 7, abetter (nonredundant) position of the second actuator to modes.
help actuator F, control the first three modes is considered. Actuators Actuation forces F, and F; in form (11) are
F, and F; from cases 2 and 3 (n, =2,n,, =3,n,=1,and n, =4)
are combined. With F'; chosen as a dummy actuator, Eq. (8) becomes F =B U — —3.455 09408 || uy | _| F» (78)
a7 TaTa T 09950 —1.235 || u, |~ | F5
F —1.871 0.1265  0.3834 u F,
[ F“ ] = | —2.097 —0.6688 —0.2668 u, | =1 Fj The controllability parameters from Eqgs. (12a) and (12b) are
d —1.341 0.6895 —0.3246 us 0
(76) A =0.2421 k =5.203 (79)
The normalized constraint matrix (10) is The rate parameter is similar to that in case 6, whereas the effort
- parameter k is similar to that in cases 1-5, and so the expected
attenuation times should be comparable with case 6 and the
A=[1 -05143 0.2421] W magnitude of actuation forces with cases 1-5.
d . t
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Fig. 13 Case 7: a) response d2’, b) response d2*, c) actuation force F,, and d) actuation force F.
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The roots of the characteristic equation (r, = *o; £ if;), given
by Eq. (23), are

o, =16.77
B, =27.28

a, = 45.28
B, =115.9

a; = 1149
By =212.7 (80)

The effective settling times are

£ =0.2087 s 1 =0.07730 s K =0.03046 s (81)
The disturbance is eliminated altogether in about 0.21 s, versus 0.19 s
for case 6. Note that the combination of F, and F; can attenuate it
faster than either actuator individually because 0.38 s was needed in
case 2 and 0.33 s in case 3. The histograms of DOF 42’ and d?* are
shownin Figs. 13aand 13b, and actuation forces F, and F are shown
in Figs. 13c and 13d.

Unlike case 6, this configuration of actuators requires smaller
forces than the actuation forces in either case 2 or 3. In fact, the
maximum force in each actuator is F7* =70 N and F§** =76 N,
their sum being only slightly greater than the maximum force for
case 2 (121 N) or 3 (131 N).

Note that if the fourth mode was considered in cases 6 or 7, then
similar to case 4 a very large value of parameter A would be obtained
to reflect slow attenuation of the fourth mode. However, matrix B,
would not be affected because there was no change in the actuator
configuration.

VII. Conclusions

A procedure for analyzing and simulating active optimal vibration
control of underactuated elastic structural systems is presented.
Underactuation brings about certain constraints that the system must
obey. These constraints, which are formulated using dummy actu-
ators, are nonintegrable (nonholonomic) in terms of the modal
variables (or the system’s degrees of freedom) but algebraic (holo-
nomic) in terms of the modal controls. The algebraic form of the
modal controls’ constraints can be used to formulate the normalized
constraint matrix and the pseudotransfer matrix. These two matrices,
which are determined in the early phase of the analysis, depend only
on the placement of the actuators and therefore define the system’s
controllability. The attenuation rate and effort parameters, which
are derived from the matrices herein, can be used to compare
controllability of a system with different configurations of actuators.

The solution procedure combines the use of the FE and symbolic
mathematics standard software to analyze and simulate the entire
control process, including the actuation and the response histograms.
As the examples demonstrate, a poor placement of actuators leading
to an excessively long attenuation time of a particular mode is indi-
cated by large numerical values of some coefficients of the constraint
matrix or a large value of the rate parameter. In turn, large values of
coefficients in the pseudotransfer matrix or a large value of the effort
parameter signal redundant actuators, resulting in excessively large
actuation forces. The aforementioned properties of the constraint and
pseudotransfer matrices, or the controllability parameters, may be
used for a preliminary assessment of the actuation setup, which can
be done within the problem’s structural analysis phase (and using
only the FE software), without actually entering the control phase
(i.e., without using the symbolic operations that require the math-
ematical software).

Appendix: Comments on Calculating
Integration Constants

The relatively large number of integration constants required to
determine the optimality equations’ solutions in the form (28) is the
consequence of additional differentiation operations [additional to
the original operations already present in Eqs. (18) and (19)] that
were performed to obtain the polynomial operator E. Therefore,
Eq. (23) is of relatively high order and, when integrated, an identical
number of additional integration constants are created. It should

noted that Eqs. (23) and solutions (28) with all the numerical values
of constants are automatically generated in MAPLE.

In Egs. (28), there are 2(n,,)* constants defining n,, modal
variables 7;, and 2n,,n. constants defining n. Lagrange multipliers
v;. Because only 2n,, initial conditions (disturbances) can be as-
sumed, the remaining 2n,,(n, — 1) constants must be found by
comparing terms in Eqgs. (18) and (19). Note that factoring out 2n,,
solving functions in Eqs. (19) provides 2n,,n,. linear equations with
2(n,,)* constants ¢, c; related only to n;, which when supple-
mented by 2n,, initial conditions provide 2n,,(n. + 1) equations.
When n.=n,, — 1, or n, =1 (one actuator is to control several
modes), the equations with the constants related to the modal
variables can be solved independently of the constants related to the
Lagrange multipliers. Because the latter constants are not used in the
subsequent analysis, the numerical effort can be reduced by not
calculating them at all (the left-out constants may be obtained from
Eq. (18) if required). Otherwise, if multiple actuators are employed,
all constants are interdependent and must be calculated simul-
taneously from Eqgs. (18) and (19).

For the case of a single actuator (n, = 1) in example I the
integration constants defining the modal variables 7, and 7, can be
found independently (without solving for the constants related to v, ).
These eight constants are determined from the set of four homo-
geneous equations (37) and four initial conditions (31a) and (31b).
The following numerical values were obtained for the integration
constants:

cl; =18.41x 1073
c?, =74.96 x 1073
ch =3.262x1073
€3, =-2.748 x 1073

cl, =—6.208 x 1073

€2, =—.5594 x 1073

ch =6.624 x 1073
3, =21.18 x 1073

(AL)

The integration constants for the function v, are not shown, as they
have no interpretive value in analyzing the suspension problem.

For the frame problem in example II, the solution of Eqs. (45a) and
(45b) involves five functions (1, 15, 13, vy, V,), in the form (28),
each containing six independent terms and six unknown integration
constants, for a total of 30 (2n,,n,) unknown constants. Substituting
the solution functions into any four of the five equations in the set of
Eqgs. (45a) and (45b) and grouping similar terms renders sets of six
algebraic equations for each differential equation, yielding 24 (four
sets of six) algebraic equations all together. With the six boundary
conditions (39), a total of 30 linear algebraic equations involving 30
unknown integration constants are obtained.
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