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This paper deals with active optimal vibration attenuation of elastic structures modeled by finite elements. The

system’s equations are linear with potentially large numbers of degrees of freedom, whereas the minimized

performance index is quadratic. The problem is formulated inmodal space so that the dimension of the problem can

be limited to controlling significantmodes only. Their number is considered greater than the number of independent

discrete actuators, making the system underactuated. The constraints resulting from underactuation are

represented by thematrix of constraints that couples the modal controls. This matrix, which plays an important role

in predicting the systems controllability, is obtained by adding a set of dummy actuators. Themodal variables are in

turn coupled via second-order nonholonomic constraints, which are satisfied with the help of time-dependent

Lagrange multipliers. The optimality equations for the problem are derived in a compact form and solved by

applying symbolic differential operators. The procedure, which applies standard finite element and mathematical

software, renders the optimal actuation forces and the response of all controlled modes, or any selected degrees of

freedom, for the entire control process. Two simulation examples are presented to illustrate the approach’s details

and the use of controllability indicators derived from the matrix of constraints.

Nomenclature

A�aij� = normalized matrix of constraints
Aa, Ar = partition of matrix A
a = coefficient weighting strain energy in the

performance index
B = actuators’ placement matrix
B̂ = matrix relating the actuators to modal controls for

fully actuated systems
�B = transfer matrix (from modal controls to actuators)

for fully actuated systems
�Ba = pseudotransfer matrix for underactuated systems
B̂0 = matrix relating the actuators to modal controls for

the systems with dummy actuators
b = coefficient weighting kinetic energy in the

performance index
C = Rayleigh damping matrix
c = coefficient weighting power of actuators in the

performance index
cikj = integration constants
D, D̂ij, ~Dij = differential operators
dik = displacement of node i in direction k
�E, ~E, Ei = differential operators
F = vector of nodal forces
Fa = vector of forces in actuators
Fd = vector of forces in dummy actuators
G = gain matrix
H = augmented Hamiltonian
J = performance index
K = stiffness matrix
M = mass matrix
n = number of degrees of freedom
na = number of independent actuators

nm = number of controlled modes
nr = number of redundant modes (or constraints)
Pd, Pv = vector of costates
Q̂d, Q̂v, R̂ = diagonal matrices in performance index
teffk = effective settling time for k frequency
U = vector of modal controls
Ua, Ur = independent and redundant modal controls
X = vector of degrees of freedom
�k, �k = roots of characteristic equation
� = vector of modal variables
�a, �r = independent and redundant modal variables
�, � = rate and effort controllability indicators
�i = damping ratio for frequency i
�i = modal shapes
� = diagonal matrix of ordered frequencies
!i = frequency of mode i

I. Introduction

M ECHANICAL systems with fewer actuators than the number
of the degrees of freedom (DOF) are referred to as under-

actuated [1–4]. Thus, any vibrating structural system with contin-
uous elastic members (and, theoretically, infinite DOF) controlled by
discrete actuators is underactuated. When such systems are modeled
using the finite element (FE) method, the number of DOF, though
finite, is usually very large in comparison with the number of actu-
ators. Many structural systems can be analyzed by the modal super-
position method, which provides sufficient accuracy by considering
a relatively small number ofmodes [5] to be referred to as significant.
The problem is still underactuated if the number of significant modes
(output size), representing the system’s generalized DOF, is greater
than the number of actuators (input size).

The DOF of an underactuated system are coupled by non-
integrable (nonholonomic) constraints arising from the equations of
motion, which impose some restrictions on its possible movements.
Also, underactuation complicates the inverse dynamics needed to
determine actuation forces because only trajectories that satisfy the
nonintegrable constraints are physically realizable. Generally, con-
trol of underactuated systems is associated with the so-called
nonminimum phase features, leading to unbounded behaviors [6,7].
This is mostly due to the inverse dynamics becoming unstable
(i.e., generating unstable zeros) when attempting to follow desired

Received 30 July 2008; revision received 29 January 2009; accepted for
publication 10 September 2009. Copyright © 2009 by the American Institute
of Aeronautics andAstronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0001-1452/09 and $10.00 in
correspondence with the CCC.

∗Graduate Student, Department of Mechanical Engineering (Correspond-
ing Author).

†Professor, Department of Mechanical Engineering, Walerian.
Szyszkowski@usask.ca.

AIAA JOURNAL
Vol. 47, No. 12, December 2009

2821

http://dx.doi.org/10.2514/1.40158


trajectories that do not satisfy the constraints resulting from
underactuation [8].

To avoid the unstable inverse dynamics when analyzing
underactuated systems, the noncausal methods were proposed and
applied mainly to flexible manipulators in [9–11]. However, these
methods were somewhat “nonphysical” and demonstrated ques-
tionable convergence (in fact, the presence and consequences of the
nonholonomic constraints appear to have been overlooked in these
papers).

Some underactuated problems with passive joints, related mostly
to tracking problems, have been analyzed by first removing the
redundant DOF and then solving the reduced fully actuated
problems, with a number of actuators controlling the same number of
independent DOF [12–18]. For fully actuated problems, the inde-
pendent modal space control (IMSC) method may be applied, with
its main advantage being that each modal variable is directly related
to a corresponding independent modal control [19]. In these cases,
the solution involves the “input space” because the problem size was
reduced to the input size. This approach is limited to cases in which
the elimination of redundant variables is possible (exactly or
approximately), and it typically requires extensive analytical effort.

The method of active optimal vibration attenuation of elastic
structures presented in this paper obtains solutions in the “output
space” with the problem size equal to the number of controlled
modes. Instead of attempting to eliminate redundant modes (or
redundant DOF) to make their total number equal to the number of
actuators, “dummy” actuators are added to make the total number of
actuators equal to the number of significant modes. The dummy
actuators are subsequently eliminated by applying the constraints,
which are nonholonomic in terms of the modal variables, but
algebraic when imposed on the modal controls. A matrix of con-
straints is defined for a particular configuration of actuators, with its
terms containing information on the system’s controllability and
attenuation characteristics. The constraints are satisfied with the use
of time-dependent Lagrange multipliers. Optimality equations are
derived as a set of coupled differential equations involving all the
modal variables and Lagrange multipliers. These equations are then
solved by applying symbolic operators to provide the optimal input
(actuation forces) and output (system response). Such an approach
can be referred to as the constrained modal space optimal control
(CMSOC) to distinguish it from the IMSC method. Finally, the
solution can be verified by directly applying the actuation forces to
the FE model of the system (which may contain a much larger
number of modes than that considered in the control).

Because the constraints due to underactuation are always satisfied,
the problemof unstable inverse dynamics is formally eliminated. The
effectiveness of particular actuator locations on controlling a parti-
cular number of vibrationmodes, or the controllability of the system,
can be evaluated before simulating the control process. In particular,
in the case of poor controllability, the CMSOC can predict whether
the system will respond with excessively high actuation forces or
very slow rates of attenuation in certain modes.

The basic steps of our approach are demonstrated on a 2-DOF
problem analyzed in example I in Sec. V. Example II, in Sec. VI,
tackles a 120-DOF problem that focuses more on the system’s
controllability, which can be evaluated at the early stage of the
simulation by using certain numerical indicators derived from the
matrix of constraints.

II. Problem Formulation

The optimal active vibration control of discrete or continuous
elasticmechanical systems, represented by FEmodelswith sufficient
DOF, is analyzed. It is assumed that the equations of motion for the
system take the following form:

M �X� C _X� KX � BFa�t� � F (1)

where M,C, and K are the constant mass, natural damping, and
stiffness matrices, respectively. The actuation force vector with na
independent components is denoted byFa�t�. The system’s DOF are

represented by vector X with n components (typically na � n).
Matrix B (n � na) assigns the actuation forces to the DOF, and F is
the corresponding nodal force vector. Formally, na actuation forces
are to control n DOF describing the system’s motion, and so there
must benr � n 	 na additional constraints to be satisfied by all DOF.

The objective is to apply actuation forces as effectively as possible
to eliminate vibration energy. Such a task can be formulated in terms
of minimizing the performance index defined as follows:

J� 1

2

Z 1
o

�aXTKX� b _XTM _X � cFTK	1F� dt! min (2)

Weighting coefficients a, b, and c are assigned to the system’s elastic
energy (potential), kinetic energy, and the work (or power) of the
actuation forces, respectively. Such a quadratic performance index is
routinely used in vibration control of flexible structures [20].

Equations (1) and (2) formally represent the linear quadratic
regulator problem with 2n states and na controls. Note that one
would normally have to solve nonlinear algebraic Riccati equations
for the unknown terms of a symmetric matrix of size 2n, or 2n2 � n
unknowns altogether, meaning that the problem presented in ex-
ample II would have 28,920 unknowns, which is prohibitively large
for any numerical handling [20]. Our approach does not use Riccati’s
equations at all.

The problem defined by Eqs. (1) and (2) can be mapped into the
modal space, where modal frequencies !i and corresponding
modal shapes �i are the solutions of the eigenvalues problem
�K 	 !2

i M��i � 0. The modal shapes matrix �� ��1; . . . ; �n�
satisfies the following orthogonality conditions:

�TM�� I (3a)

�TK��� (3b)

where I is a unit matrix, and � is a diagonal matrix of ordered
frequencies with the terms �ii � !2

i .
Vectors X and F in Eqs. (1) and (2) are replaced by vectors of

modal variables � and modal forces U, respectively, through the
following transformations:

X� �� (4a)

U� �TF (4b)

With C assumed as a Rayleigh matrix, the equations of motion (1)
become uncoupled in modal space, taking the following form:

I ����_�����U or ��i � 2�i!i _�i � !2
i �i � ui

i� 1; 2; . . . (5)

where �ii � 2�i!i and �i � �Ti C�i=�2!i� are passive modal
damping ratios. The numbers of modal variables and modal controls
in Eq. (5) are identical, so that the direct and inverse mapping
between the controls U and variables � is always possible in the
modal space.

Substituting Eqs. (4a) and (4b) into Eq. (2) and using Eqs. (3a) and
(3b), the performance index is transformed into

J� 1

2

Z 1
o

��TQ̂d�� _�TQ̂v _��UTR̂U� dt (6)

The new weighting matrices in the transformed performance index

(6) are diagonal and equal to Q̂d � a�, Q̂v � bI, and R̂� c�	1.
Equations of motion (5) and performance index (6) in the modal

space are formally equivalent to Eqs. (1) and (2), respectively (the
latter define the problem in terms of DOF). The benefit of using
modal space in computational dynamics lies in the possibility of
obtaining acceptable solutions for systems with a large number of
DOF (or continuous systems) by considering only nm significant
modes, where nm � n (see [5] for physical and numerical
justifications). The number of significant modes that might be
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required in modeling a structure is generally problem related and
depends mainly on its physical characteristics, the spatial
distribution, and the frequency content of the loading.

The first na significant modal variables, which might be viewed as
controlled directly by na independent actuators, are referred to as
independent, whereas the remaining nr � nm 	 na modal variables,
as controlled indirectly, are referred to as redundant. Redundant
variables are related to the independent ones by nr constraints, which
are discussed in detail later in this section.

Because only the first nm vibration modes are considered

significant, the reducedmodal shapematrix ~�� ��1; . . . ; �nm � of size
n � nm is required in the transformations (4a) and (4b). It is assumed

that the modal shape matrix ~� of sufficient size and accuracy is
available from the FE software (ANSYS was used for this purpose).

All nm components ofU driving the significant modes, for a given
vector Fa, are obtained from

U� ~�TBFa � B̂Fa (7)

The dimensions of matrix B̂� ~�TB are nm � na. Operation (7) is
always possible in the direct dynamics, but in control analysis vector
Fa is to be determined (the inverse dynamics); therefore, Eq. (7) is
used in reverse order. Then this vector is to generate the modal
control vectorU that in turn drivesmodal variable vector � andfinally
the desired vector X of system DOF.

If the number of actuators na is equal to the number of significant
modes nm (fully actuated) the inversion of Eq. (7) requires a

nonsingular matrix B̂ of dimensions na � na such that the vector of

actuation forces can be obtained fromFa � B̂	1U. Therefore, matrix
�B� B̂	1, transferring the modal controls into actuator forces, can be
related to controllability because it directly implieswhether or not the
actuators are capable of controlling all the modes that define the
system dynamics [recall that the modal controls can always be
mapped into the modal variables by applying Eq. (5)].

This reasoning can be extended to the underactuated system for
which na < nm. The aforementioned nr � nm 	 na additional
constraints for the system can be explicitly determined by sequen-
tially eliminating the na components of vector Fa from Eq. (7) to
obtain the extra conditions to be satisfied by all nm components of
vector U. Alternatively, these conditions can be obtained by adding
nr dummy (zero-value) actuatorsFd to the system’s na real actuators
Fa. The only restriction on dummy actuator placement is that the

corresponding square matrix B̂0 (of size nm � nm) is nonsingular.

With dummy actuators included, the new �B̂0�	1 can be calculated
and partitioned so that the inverse operation of Eq. (7) takes the
following form:

Fa
Fd

� �
� �B̂0�	1U�

~Ba ~Br
Aa Ar

� �
Ua
Ur

� �
� Fa

0

� �
(8)

The dimensions of square matrices ~Ba and Ar are na � na and
nr � nr, respectively. To be consistent with the division of the modal
variables into independent and redundant, vectorU� �UT

a UT
r �T is

also divided into a vector of independent modal controls Ua �
� u1 
 
 
 una �T and a vector of redundant modal controls
Ur � � una�1 
 
 
 unm �T . Both controls are determined, but only
Ua will be required for determining the actuation forces.

Because Fd � 0, the rows in the lower partition of form (8) define
the set of nr constraints, linear in terms ofU, which can be written in
the form of homogeneous equations:

h�u1; . . . ; um� � AaUa � ArUr � AU� 0 (9)

Matrix A� �Aa Ar � of size nr � nm, to be referred to as the matrix
of constraints, may be fully populated with ncnm nonzero
coefficients aij. However, because Eq. (9) is homogeneous, these
coefficients can be normalized such thataii � 1 andak;i � 0 for k > i
(left bottom corner) and ak;na�1�k � 0 for 1 � k � nr 	 1 (right
upper corner). This gives the following form:

A�

1 a12 a13 . . . a1;nr . . . a1;na
1 a23 . . . a2;nr . . . a2;na

1 . . . . . . . . . . . .

. . . . . . . . . . . .

1 . . . anr;na|���������������������������������{z���������������������������������}
Aa

a1;na�1
a2;na�1 a2;na�2
. . . . . .

. . . . . . . . .

anr;na�1 anr;na�2 . . . anr;nm|��������������������������{z��������������������������}
Ar

2
6666664

3
7777775 (10)

This normalized form of A is independent of the selection of dummy
actuators because their role is only to facilitate the process of
eliminating Fa from Eq. (7), as already mentioned. Hence, matrix A
represents the system’s configuration of real actuators and will be
used for evaluating its controllability.

Real actuation force vector Fa may be generated from the full
modal control vector U� �UT

a UT
r �T through the top partition of

form (8) (i.e., Fa � ~BaUa � ~BrUr). However, using the constraint
(9) to eliminate Ur, the actuation forces can be obtained solely in
terms of the components of independent modal control vector Ua in
the following form:

Fa � �BaUa where �Ba � ~Ba 	 ~BrA
	1
r Aa (11)

The dimensions of squarematrix �Ba are na � na. This matrix, similar
to matrix A, is independent of the selection of dummy actuators. If a

problem is fully actuated (nm � na), then �Ba � �B. Equation (11)
requires the nonsingularity of matrixAr; otherwise. Eq. (9) cannot be
used to determine the redundant controls in terms of the independent

controls. Matrix �Ba, referred to as the pseudotransfer matrix because

it has a similar physical interpretation as matrix �B for fully actuated
systems [see Eq. (7)], must also be nonsingular. More details about

obtainingmatricesA and �Ba are given in Sec. V, inwhich example I is
presented.

MatricesAr and �Ba can be considered indicators of controllability.
Thus, the following two numerical measures, � and �, referred to as
the rate and effort parameters, respectively, are adopted to reflect
control performance (or the effectiveness of certain actuators’
locations):

�� j detArj (12a)

�� j det �Baj (12b)

The first parameter reflects the rate of attenuating the system’s
disturbances, whereas the second is related to the actuation forces
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required in the process. Such “physical“ interpretations of these
parameters will be illustrated in Sec. VI, in which example II is
presented.

The controllability parameters can be used only to compare
different configurations of actuators for a particular mechanical
system. Note that matrix Ar in Eq. (12a), which represents the last nr
columns of the normalized matrix A in Eq. (10), is always triangular
so that detAr � a1;na�1 � a2;na�2 � 
 
 
 � anr;nm . Ideally the best rate
of attenuation of all modes is achieved if all nonzero elements of
matrix Ar have a value of unity, and so �� j detArj � 1. This is
because for such locations of actuators the redundant modal controls
will have similar magnitudes as the independent modal controls.
Consequently, in the CMSOC, the redundant modal variables will be
attenuated at a similar rate as the independent modal variables, which
in turn are attenuated according to the IMSC scheme.

Actuator locations with smaller values of effort parameter � will
generally have smallermaximum force requirements. This is because
the independent modal controls are determined first, irrespective of
actuator positioning, and next mapped into the actuation forces.

Formally, the equations of dynamics (5), with constraints (9), and
performance index (6) completely define the optimization problem
with na independent actuators (the input size) in the nm-dimensional
modal space (the output size). Such problems can be solved by
applying the optimality conditions, which are derived next.

III. Optimality Equations

The optimality conditions for the problem defined by Eqs. (5) and
(6) and constraint (9) will be derived from Pontryagin’s principle.
Treating � and _� as vectors of independent state variables, the
augmented Hamiltonian can be written as follows:

H �	1
2
��TQ̂d�� _�TQ̂v _��UTR̂U� �� � PTd _�

� PTv �	�_� 	���U� � vTAU (13)

Vectors Pd andPv are standard costates related to the states (� and _�,
respectively). Vector vT � � v1 
 
 
 vnr � represents the set of time-
dependent Lagrangemultipliers introduced to enforce the constraints
(9). Applying the Pontryagin formalism, the costate equations for the
problem are obtained in the following form:

_P d �	@H=@�� Q̂d���Pv (14a)

_P v �	@H=@ _�� Q̂v _� 	 Pd ��Pv (14b)

The Hamiltonian is stationary with respect to modal control if

@H=@U�	R̂U� Pv � ATv� 0 (15)

Substituting Eq. (5) into Eq. (15) renders

Pv � R̂�I ����_����� 	 ATv (16)

Substituting Eq. (16) into Eq. (14b) yields

Pd � Q̂v _� 	 R̂�I _��������_�� ��R̂�I ����_�����
� AT _v 	�ATv (17)

Finally, substituting Eq. (17) into Eq. (14a) gives

R̂ �����2�R̂	 Q̂v 	 R̂�2� ��� �R̂�2 � Q̂d��
	 �AT �v 	�AT _v��ATv� � 0 (18)

Equation (18) represents the set of conditions required for optimal
attenuation. For fully actuated systems (na � nm), the last bracketed
term in Eq. (18) is absent and modal variables � become uncoupled
(uncoupled optimality equations were dealt with in [21,22]). For
underactuated systems, thenm equations in set (18) containnmmodal
variables (na independent variables �a andnr redundant variables �c)
and nr unknown Lagrange multipliers. To solve for all nm � nr

unknown functions in vectors � and 	, Eq. (18) must be augmented
by nr equations of constraints (9). These constraints, after substi-
tuting Eq. (5), take the following differential form in terms of modal
variables:

AU� A�I ����_����� � 0 (19)

The modal variables in Eq. (19) are coupled by higher time
derivatives. Unlike the independent and redundant components of
controlsU, related via Eq. (9), the independent components ofmodal
variables �a cannot be separated analytically from the redundant
components of �c. Therefore, the constraints (19) are nonholonomic.

The set of nm � nr equations in Eqs. (18) and (19) contain nm
modal variables in vector � and nr Lagrange multipliers in vector v.
All nm � nr unknown functions can be determined provided that
4nm boundary conditions, imposed on nm components of vector �,
are available. Formally, only the independent modes are required to

determine the actuation forces (from Fa � �Ba�I ��a ��_�a ���a�),
whereas all the modes are needed to determine any particular DOF
(from X � ��). The details of the solution method are discussed in
Sec. IV.

Note that the system’s constraints (19) resulting from under-
actuation will always be met in the CMSOC approach, and that the
actuators are forced to control all the modes involved. Also, the paths
that are specified by the end points will be determined automatically
from Eqs. (18) and (19). This problem is somewhat different than
solving the problems of controlling underactuated systems to follow
the assumed paths (that may or may not satisfy the system’s
constraints) as presented in [23,24].

IV. Solution Method

Using the symbolic differential operator Dn � dn=dtn, Eq. (18)
can be written as follows:

Ei�i �
Xnr
j�1

D̂ijvj; i� 1 . . . nm (20)

where

Ei � c!	2i D4 � �2c�1 	 2�2i � 	 b�D2 � �c� a�!2
i

D̂ ij � aji�D2 	 2�i!iD� !2
i �

In turn, Eq. (19) becomes

Xnm
i�1

~Dij�i � 0 j� 1 
 
 
 nr (21)

where

~D ij � aji�D2 � 2�i!iD� !2
i �

Operators Ei are of the fourth order, whereas operators D̂ij and ~Dij

are of the second order. The set of Eqs. (20) and (21) can bewritten in
the following matrix form:

E1 . . . : 0 	D̂11 . . . : 	D̂1nr

. . . : . . . : . . . : . . . : . . . : . . . :

0 . . . : Enm 	D̂nm1
. . . : 	D̂nmnr

~D11 . . . : ~Dnm1 0 . . . : 0

. . . : . . . : . . . : . . . : . . . : . . . :

~D1nr
. . . : ~Dnmnr

0 . . . : 0|����������������������������������������{z����������������������������������������}
�E

2
6666666666666664

3
7777777777777775

�1

. . . :

�nm

v1

. . . :

vnc|{z}
Y

2
6666666666666664

3
7777777777777775

� �EY � 0 (22)
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Matrix �E is of size nt � nr � nm, and vector Y contains all the
unknown modal variables and Lagrange multipliers. Each
component of Y in Eq. (22) must satisfy the following condition:

det �E 
 Yi � ~E 
 Yi � 0 (23)

Operator ~E� det �E can always be found for known operators Ei,

D̂ij, and ~Dij. Conveniently, Eq. (23) can be solved by symbolic
mathematical software. The MAPLE program was used in the
examples to follow.

Note that in Eq. (22) the upper-left portion of matrix �E is diagonal,
whereas the lower right portion consists of zero terms. Consequently,

the order of ~E is always 4nm (i.e., ~E�D4nm � 
 
 
), independent of
the number of Lagrange multipliers. For example, the explicit forms
of this operator for a few selected cases with different numbers of nm
modes and na actuators are

~E� E1D̂21
~D21 � E2D̂11

~D11 nm � 2 and na � 1

~E� E1D̂21
~D21D̂32

~D32 � E2D̂11
~D11D̂32

~D32

� E3D̂11
~D11D̂22

~D22; nm � 3 and na � 1

~E� E1E2E4D̂31
~D31 � E1E3E4D̂21

~D21

� E2E3E4D̂11
~D11; nm � 4 and na � 3

Each term in ~E is a product of na operators Ei and nr pairs D̂ij
~Dij

(nr � nm 	 na). For fully actuated problems, for which nc � 0 (all

aij � 0), operator ~E becomes

~E� E1 
 E2 
 
 
Enm � 0 (24)

Once ~E in Eq. (23) is determined, the corresponding characteristic
equation can be obtained by substituting Dn ! rn to obtain a 4nthm-
order polynomial in the form r4nm � 
 
 
 � 0. The roots of this
polynomial are rk ���k � i�k (k� 1; . . . ; nm), where �k and �k
are real nonnegative numbers. The general solution to each of the
unknown functions Yj in Eq. (22) consists of the superposition of
4nm exponential functions with complex exponents rk. For example,
if�k and�k are nonmultiple, then for anyYj four independent solving
functions are generated in the following form:

e	�kt�c1kj sin�kt� c2kj cos�kt� and e��kt�c3kj sin�kt� c4kj cos�kt�
(25)

The unknown integration constants c1kj; . . . ; c
4
kj, which are discussed

in more detail in the Appendix, are 4nmnt in total. These additional
constants must be chosen such that each generated solution Yj
satisfies the original Eqs. (18) and (19). This can be secured by
directly substituting and comparing the terms of similar solving
functions in these equations, which yields 4nmnt additional linear
algebraic equations, 4nmnm from Eq. (18) and 4nmnr from Eq. (19).

Any set of 4nm linear algebraic equations, obtained from one
differential equation in Eq. (18) or Eq. (19), must be replaced by a set
of 4nm equations representing the initial and final boundary
conditions for the modal variable vector � to obtain a complete set of
linearly independent algebraic equations. Conveniently, all the
required 4nmnt integration constants can be determined automati-
cally from the MAPLE program.

Any disturbances may be assumed in the form of the initial

conditions X�0� � X0 and _X�0� � _X0. These conditions can be con-
verted into initial conditions for the modal variables by applying
Eqs. (4a) and (3a) to obtain

��0� � ~�TMX�0� � �0 _��0� � ~�TM _X�0� � _�0 (26)

To represent the system at rest, with vibrations eliminated, the final
conditions take the following form:

X�1� � _X�1� � 0 or ��1� � _��1� � 0 (27)

Equations (27) assume an infinite maneuver time, which is routinely
done to formulate the so-called time-invariant control problems.
Constants c3kj and c

4
kj in Eq. (25) must be zero for such problems due

to conditions (27). Therefore, the solutions to Eqs. (23) take the
following form:

Yj �
Xnm
k�1

e	�kt�c1kj sin�kt� c2kj cos�kt� j� 1 
 
 
 nt (28)

where Yj represents either �j or vj. Now only 2nmnt integration
constants c1kj and c

2
kj are to be determined. Parameters �k and �k can,

respectively, be interpreted as the frequency and active damping
associated with the kth controlled mode. Any vibrations with the
frequency �k will be reduced to about 3% of the initial value after
�kt

ef
k 
 3:5, where tefk denotes an “effective” settling time for this

particular frequency (i.e., tefi � 3:5=�i). Also, the active damping
ratio of the kth mode is defined as �k � �k=�k. However, because the
modes are coupled, the values of �k or tefk better characterize the
attenuation of a particular mode than the value of �k.

The complete CMSOC procedure requires some interaction
between the FE software (ANSYS) and the symbolic math software
(MAPLE). The ANSYS program provides the characteristic param-
eters of the mechanical system (!i, �i) and the terms of matrix A (for
simpler structures, these parameters may be determined analyti-

cally). Next, MAPLE determines operator ~E� det �E, solves for the
roots of its characteristic equation, and generates the corresponding
solution functions (28). These functions are substituted back into
Eqs. (18) and (19) to group the coefficients of similar terms to obtain
the set of additional equations, which together with the boundary
conditions (26) and (27) determine the complete set of required
integration constants and modal variable vector � (more details are
given in the Appendix).

Optimal modal control vectorU (with independent and redundant
components) is obtained by substitutingmodal variables into Eq. (5),
whereas actuation forces are obtained from Eq. (11). Finally, the
trajectory of any DOF of interest can be determined from Eq. (4a).
This way, the process of optimally controlling vibrations can be fully
simulated starting from any assumed set of disturbances to the
configuration at rest. More details of this procedure are presented in
the numerical examples.

Also, it can be shown that the actuation forces in the CMSOC
method can be expressed as a function of the state variables:

Fa �	G 

�
_�

� �
(29)

where the terms of the gain matrix G of size na � 2nm can be
determined by comparing similar functions defining the forces and
the state, similar to how itwas done for fully actuated systems in [22].
The details of determining matrix G are not discussed further in this
paper.

Note that, for fully actuated systems, operator (24) is a series of
independent fourth order operators Ei, where i� 1 
 
 
 nm. Thus,
additional differentiations are avoided and, consequently, no addi-
tional integration constants are generated. Solving each equation
Ei � 0 leads to four integration constants to be obtained directly from
four boundary conditions (26) and (27) for the ith mode. This
confirms that in the CMSOC procedure the modal variables of fully
actuated problems can be solved independently, one by one, as in the
IMSC approach [19]).

V. Example I: Discrete Two-Mass Suspension Problem

The first numerical example is a simple discrete two-mass
problem, which is presented to familiarize the reader with the basic
steps of the procedure.Most of the operations for this problem can be
recreated without using computer software.

The discrete underactuated system with two DOF [two modes of
vibration (nm � 2)] and controlled by a single actuator (na � 1,
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nr � 1), is shown in Fig. 1. The system has been used to rudimen-
tarily represent the active suspension of a car [16], and so it will be
referred to as the suspension problem.

A quarter of the car’s mass is denoted by m2, and the mass of one
wheel with attachments is denoted by m1. The tire stiffness is
represented by k1, and the stiffness of a spring in the shock absorber is
represented by k2 (typically m2 � m1 and k2 � k1). Fa represents
the real actuator force, andFd � 0 is a dummy actuator’s force [these

two actuators ensure the nonsingularity of matrix B̂ in Eq. (8)].
The matrices and the nodal force vectors, as defined in Eq. (1), are

M� m1

m2

� �
K� k1� k2 	k2

	k2 k2

� �
F� 	1 1

1 0

� �
Fa
Fd

� �

The following numerical values are assumed for the analysis:

m1�40 kg m2�200 kg k1�235:4 kN=m k2�39:24 kN=m

Modal analysis renders the following frequencies of free vibrations
and modal shape matrix:

!1 � 12:94 rad=s !2 � 83:04 rad=s (30a)

�� ~�� 0:01033 0:15778
0:07056 	0:00462

� �
(30b)

Initially the system is at rest in the position x1�0� � 4 mm and
x2�0� � 5 mm. The corresponding four boundary conditions for the
modal variables are

�1�0� � 0:07221 �2�0� � 0:02062 (31a)

_� 1�0� � 0 _�2�0� � 0 (31b)

For actuators Fa and Fd, matrix B̂0 in Eq. (8) is

B̂0 � ~�TB�
0:01033 0:07056

0:1578 	0:004620

" #
	1 1

1 0

" #

�
0:06023 0:01033

	0:1624 0:1578

" #

Applying Eq. (8) yields

Fa

Fd

" #
� �B̂0�	1U�

~Ba ~Br

Aa Ar

" #
Ua

Ur

" #

�
14:11 	0:9241
14:53 5:387

" #
u1

u2

" #
�

Fa

0

" #

The second row of this operation gives the constraint matrix
(A� � 14:53 5:387 �), which can be normalized according to
Eq. (10) to render

A� � 1 0:3709 � (32)

The elements of thismatrix are denoted asa11 � 1 anda12 � 0:3709.
Note the latter term represents a one-term matrix Ar.

The actuator force may be written according to Eq. (11) in the
following form:

Fa � 16:60u1 (33)

This equation reflects the relationship between the actuator force and
the independent modal control [the numerical value 16.60 represents

a one-term matrix �Ba in Eq. (11)].

It can easily be verified that identical A and �Ba will be obtained if
the dummy actuator is positioned, for example, betweenmassm2 and
the ground.

The controllability parameters, given by Eqs. (12a) and (12b), are

�� 0:3709 �� 16:60 (34)

These parameters are of limited interest in this problem, as the
number of possible single-actuator configurations is small, but they
are shown here for completeness. The next example, in Sec. VI, will
discuss them in greater detail.

The assumed optimization parameters in the performance index
(2) are a� b� c� 1, making the diagonal weighting matrices in
the modal performance index (6) equal to

Q̂ dii � !2
i Q̂vii � 1 R̂ii � 1=!2

i

Operators given by Eqs. (20) and (21) take the following form:

Ei �D4!	2i �D2 � 2!2
i and D̂ij � ~Dij � aji�D2 � !2

i �

Substituting into Eq. (22) and solving for ~E in Eq. (23), we obtain the
eighth-order operator

~E� ~D2
11E2 � ~D2

12E1

The roots of this characteristic equation are rk ���k � i�k (k� 1,
2), where

�1� 7:574 �2� 22:36 �1� 12:82 �2� 82:87 (35)

Note that �i � !i. Also note that for this case �2 � 3�1, indicating
that the second frequency will be eliminated at a faster rate than the
first (the modal active damping ratios formally are �1 � 0:5909 and
�2 � 0:2722).

For the time-invariant problem, each unknown variable contains
four independent terms (each term corresponding to a distinct root of
the characteristic equation) and four integration constants. Unknown
modal variables �1 � Y1, �2 � Y2, and Lagrange multiplier v1 � Y3
thus take the form [see (28)]

Yj � e	�1t�c11j sin��1t� � c21j cos��1t��
� e	�2t�c12j sin��2t� � c22j cos��2t�� (36)

In total, there are 12 integration constants, c11j, c
1
2j, c

2
1j, and c

2
2j (j� 1,

2, 3), needed to describe �1,�2, and v1. Tofind their numerical values,
an equal number of independent algebraic equations are required.
These equations are generated as follows.

For this problem, the optimality equation (18) is (nm � 2)

��� i � !2
i ��i � 2!4

i �i � a1i!2
i � �	� !2

i 	� i� 1; 2 (37)

The nonholonomic constraint (19) is (nr � 1)

a11� ��1 � !2
1�1� � a12� ��2 � !2

2�2� � 0 (38)

dF

1x

2x

1m

2m

1k

2k aF

Fig. 1 Suspension system.
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Substituting �1, �2, and v1 [in the form of Eq. (36)] into Eqs. (37) and
(38) and comparing similar terms yields nt � nm � �r � 3 sets of
homogeneous linear equations (with constants clkj as unknowns),

each set containing 2nm � 4 algebraic equations, which all together
yields 12 homogeneous linear equations. A nontrivial solution
for clkj is obtained by ignoring one set of equations [either from

Eq. (37) or Eq. (38)] and replacing it with the set of initial boundary
conditions (31a).

The calculated integration constants for the suspension problem
[see (A1)] are substituted back into Eq. (36) to obtain the modal
variables, which are plotted in Figs. 2a and 2b.Both frequencies,with
the periods T1 � 0:49 s and T2 � 0:076 s, contribute to the response
of each modal variable; this is particularly visible for the second
modal variable in Figs. 2a and 2b.

The histograms of the DOF are plotted in Figs. 3a and 3b, in which
it appears that x1 is dominated by the second frequency and x2 is
dominated by the first frequency. The second frequency oscillations
disappear faster than oscillations with the first frequency, because
�2 > �1. The settling times (i.e., tefi � 3:5=�i) are t

ef
1 � 0:462 s and

tef2 � 0:156 s, which is apparent in Figs. 2–5.

The modal controls, plotted in Fig. 4, satisfy the constraint equa-
tion AU� 0 [where A is given in Eq. (32)] or, according to Eq. (9),
h�u1; u2� � u1 � 0:3709u2 � 0.

The actuation force to control this 2-DOF system is obtained from
Eq. (33) and plotted in Fig. 5. Themaximum required actuation force
is about 270N.Note how the frequencies of both participatingmodes
affect its variation in time (though for t > tef2 only the frequency of the
first mode is significant in the variation of Fa).

VI. Example II: Distributed-Mass Frame Problem

The second example is a continuous system that requires the use of
both FE and symbolic mathematics programs. The main purpose of
this example is to demonstrate the abilities of the CMSOC procedure
to predict the performance of particular configurations of the
actuators in the FE phase of simulation. These predictions are then
verified in the control phase. Special attention will be paid to the
relationship between the magnitudes of the parameters of control-
lability, � and �, determined at the beginning of the simulation, and
the response characteristics of the controlled system. In particular,

Fig. 2 Modal variables as a function of time: a) �1, and b) �2.

Fig. 3 Position of DOF as a function of time: a) x1, and b) x2.

Fig. 4 Modal controls as a function of time: a) u1, and b) u2.
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note how either excessively long attenuation times (case 4) or
excessively large actuation force requirements (case 6) can be identi-
fied from these parameters.

A distributed-mass three-stage plane frame is shown in Fig. 6a. All
members are aluminum (E� 71:7 GPa, 
� 2800 kg=m3) with a
cross-sectional area of 76 mm2 (a mass of 0:2128 kg=m) and an area
moment of inertia of 4585 mm4. The topmost horizontal member
weighs 1 kg and is considered rigid.

The frame was modeled in ANSYS by two-dimensional beam
(five elements permember) andmass elements as a 120-DOF system.
The locations of all relevant nodes are indicated in the figure. The
horizontal and vertical displacements at node p are denoted by dpx
and dpy , respectively. The modal shapes of the four lowest vibration
modes, with frequencies !i (i� 1 
 
 
 4), are shown in Fig. 6b. The
attenuation of disturbance in the frame will be simulated for several
different numbers and configurations of actuators that actively
control three or four modes of vibrations. Actuators exert equal and
opposite axial forces along a line between any two points on the
frame where they are attached.

The actuator configurations aswell as the number ofmodesnm that
will be considered are indicated in Fig. 7. As mentioned, the focus of
this example is on the assessment and improvement of attenuation
performance through actuator configuration, and so in each case in
Fig. 7 the controllability parameters, � and �, will be of particular
interest. Note that nearly all cases can be analyzed by using the same

matrix B̂ for the system, but differently assigning the actuators as real
and dummy. This indicates that the locations of dummy actuators,
though arbitrary, should be selected in the analysis in such away that,
in searching for improved performance, they potentially may be
switched with the real ones.

An initial disturbance is assumed in terms of modal variables as

�1�0� � 0:05 �3�0� � 0:0045 _�i�0� � 0

�2�0� � 0:005 �4�0� � 0:004 i� 1 
 
 
 4
(39)

Conditions (39), whenmapped into theDOF space, correspond to the
initial displacements:

d27x �0:03801 m d7x�0:02838 m d24y �	0:005740 m (40)

As in the first example, the assumed optimization parameters in the
performance index (2) are a� b� c� 1. The modal analysis for
this problem was performed using the ANSYS software.

Upon inspection of themodal shapes in Fig. 6, itmay be concluded
that one actuator attached at corner nodes, as in cases 1–3, should be
able to control the first three vibration modes reasonably well.
However, some difficulty might be expected when trying to control
the fourth vibration mode shape in all cases (with the exception of
case 5), as the actuators are located at almost stationary corner nodes
of the fourth mode. This will be demonstrated in case 4, in which the
actuator from case 2 is used to control all four modes. The actuator in
case 5 should control the fourthmode better, due to its slightly shifted
location away from the corner nodes. Case 6 offers another example
of poor actuator positioning for controlling three modes of vibration,
but for a somewhat more complicated reason. The configuration in
case 7,which “combines” cases 2 and 3, should significantly improve
the control over case 6. These somewhat intuitive observations are to
be verified by the method proposed by performing the following
simulations.

A. Case 1 Actuator F1 to Control Three Modes

The first three modes of vibration are to be controlled by actuator
F1 located between nodes 18 and 27 (na � 1, nm � 3, nr � 2, and
nt � 5). If F2 and F3 (between nodes 7 and 13 and 2 and 12,
respectively) are selected as dummy actuators, then Eq. (8) takes the
following form (all the numbers were obtained from the ANSYS
modal analysis):

Fa

Fd

" #
� �B̂0�	1U�

~Ba ~Br

Aa Ar

" #
Ua

Ur

" #

�
	1:341 0:6895 	0:3246
	1:871 0:1265 0:3834

	2:097 	0:6688 	0:2668

2
64

3
75

u1

u2

u3

2
64

3
75�

F1

0

0

2
64

3
75 (41)

The lower partition (two bottom rows) of Eq. (41) forms the
constraint matrix, that when normalized to the form defined in
Eq. (10) becomes

A� 1 0:1708
1 0:8592

� �
(42)

According to Eq. (11), the actuation force can be expressed as

F1 � �BaUa �	7:588u1 (43)

Fig. 5 Optimal actuation force Fa as a function of time.

Fig. 6 Shown are the following: a) the frame, and b) its first fourmodal

shapes and frequencies.

12

Case 2 3=mn Case 3 3=mnCase 1 3=mn

x

y
2F  7 

13
3F

 2

12

1F  27 

 18 

4F

Case 5 4=mn

  7 

25

5F

2F

Case 6 3=mn

    18 

 2

 7

13

Case 7 3=mn

2F

3F

 7

    13  2

2F

Case 4 4=mn

 13 

  7 

Fig. 7 Actuator configurations and number of modes nm to be

considered.
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The controllability parameters, given by (12a) and (12b), are

�� 0:1468 �� 7:588 (44)

Recall that rate indicator � should have a value “close” to unity,
indicating that a given actuator configuration can quickly attenuate
all controlled modes. Also, the effort parameter should have a
“small” value, so that the actuator in this configuration will have
small maximum force requirements. The meanings of close and
small are relative and will be clarified later in this section.

The explicit forms of the optimality and constraint Eqs. (18) and
(19) are

���i�!2
i ��i� 2!4

i �i

� a1i!2
i � �	1�!2

i 	1� � a2i!2
i � �	2�!2

i 	2� i� 1;2;3 (45a)

aj1� ��1 � !2
1�1� � aj2� ��2 � !2

2�2� � aj3� ��2 � !2
2�2�

� 0 j� 1; 2 (45b)

The roots of the characteristic equation (rk ���k � i�k), given by
Eq. (23), are calculated as

�1� 7:308 �2� 50:44 �3� 62:20

�1� 27:68 �2� 116:6 �3� 213:7 (46)

Note that again �i � !i. The corresponding modal active damping
ratios are �1 � 0:2640, �2 � 0:4324, and �3 � 0:2911, and the
effective settling times for the three controlled modes are

teff1 � 0:4789 s teff2 � 0:06939 s teff3 � 0:05627 s (47)

These settling times are reflected in Fig. 8, in which oscillations with
the second and third frequencies disappear after about 0.07 s, and
those with the first frequency after about 0.48 s.

Solving for the unknown30 constants (2nmnt, see comments in the
Appendix) enables the determination of all modal variables, modal
controls, actuation force, and the response of any DOF of interest.
Plots of some of these variables are shown in Fig. 8.

The uncontrolled fourth modal variable, given by �4�t��
�4�0� cos�!4t�, is not shown. However, it is included in the DOF
responses,d27x ,d

7
x, andd

24
y . Because of its shape, the fourthmode (see

Fig. 6), which is unattenuated, hardly affects horizontal displace-
ments d27x and d7x (Fig. 8h), but significantly impacts vertical dis-
placement d24y (Fig. 8i). Actuation force F1 has a peak value of
130.7 N (see Fig. 8g).

B. Case 2 Actuator F2 to Control Three Modes

The first three modes of vibration are to be controlled by actuator
F2 located between nodes 7 and 13 (na � 1, nm � 3, nr � 2, and
nt � 5). For this case, F1 and F3 may be considered dummy
actuators; hence, Eq. (8) is identical to that used in case 1 [given in

Eq. (41)], only the first and second rows of �B̂0�	1 are swapped,
rendering

Fa

Fd

" #
� �B̂0�	1U�

~Ba ~Br

Aa Ar

" #
Ua

Ur

" #

�
	1:871 0:1225 0:3834

	1:341 0:6895 	0:3246
	2:097 	0:6688 	0:2668

2
64

3
75

u1

u2

u3

2
64

3
75�

F2

0

0

2
64

3
75 (48)

By partitioning form (48), the pseudotransfer matrix and constraint
matrix are calculated by Eqs. (10) and (11), respectively, to obtain

�B a �	4:212 A� 1 1:242
1 	0:1379

� �
(49)

The controllability parameters from (12a) and (12b) are

�� 0:1713 �� 4:212 (50)

Rate parameter � is slightly closer to unity, reflecting a marginal
improvement in the attenuation rate of the slowest mode. Also, effort
parameter � in Eq. (50) is slightly lower than in case 1, and so a
slightly smaller maximum force should be expected. In fact, as
shown in Fig. 9b, the actuation force F2 has a peak value of 121.0 N,
in comparison with Fmax

1 � 130:7.
The roots (rk ���k � i�k) of Eq. (23) are

�1 � 12:91 �2 � 9:260 �3 � 88:65

�1 � 27:51 �2 � 112:6 �3 � 218:7 (51)

The effective settling times are

teff1 � 0:2712 s teff2 � 0:3780 s teff3 � 0:03950 s (52)

C. Case 3 Actuator F3 to Control Three Modes

Nowconsider controlling the frame’sfirst threemodes of vibration
with actuator F3, located between nodes 2 and 12. For this case, F1

and F2 may be considered dummy actuators and so Eq. (8) is also
identical to case 1 [given in Eq. (41)], with the first and third rows of

�B̂0�	1 swapped, giving

Fa

Fd

" #
� �B̂0�	1U�

~Ba ~Br

Aa Ar

" #
Ua

Ur

" #

�
	2:097 	0:6688 	0:2668
	1:871 0:1265 0:3834

	1:341 0:6895 	0:3246

2
64

3
75

u1

u2

u3

2
64

3
75�

F3

0

0

2
64

3
75 (53)

The pseudotransfer matrix and constraint matrix become

�B a �	5:532 A� 1 	0:2723
1 	1:001

� �
(54)

The controllability parameters are

�� 0:2726 �� 5:532 (55)

Rate parameter� is again slightly closer to unity than in cases 1 and 2,
signaling that amarginal improvement in the slowest attenuation rate
is expected. Effort parameter � is of a similar magnitude to both
cases 1 and 2, and so a similar maximum force is expected in this
case. Accordingly, the maximum force for actuator F3 is 131.4 N.

Fig. 8 Histograms for case 1: a, b, c) of modal variables; d, e, f) modal

controls; g) actuation force; and h, i) displacements.
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The roots of Eq. (23) are (rk ���k � i�k)

�1 � 10:74 �2 � 46:13 �3 � 45:56

�1 � 27:73 �2 � 114:0 �3 � 216:9 (56)

And the corresponding settling times are

teff1 � 0:3260 s 0:07670 s teff3 � 0:07590 s (57)

The optimal control forces and the x-displacement response of node
7 (d7x) for cases 1–3 are shown in Fig. 9 to compare the control efforts
and attenuation rates.

In case 1, the disturbance is eliminated in about 0.47 s, in case 2 it
takes about 0.38 s, and in case 3 it takes about 0.33 s. These settling
times correlatewell with the values of rate parameter �, which takes a
value closer to unity for faster attenuation. In cases 1 and 3, the
second and third modes are attenuated quickly (in about 0.07 s),
whereas in case 2 the secondmode is attenuated last (in about 0.38 s).
The control process requires actuation forces of similar magnitudes
with the maximum forces of 130.7 N in case 1, 121.0 N in case 2,
and 131.4 N in case 3, which is approximately correlated to the
effort parameter �. As can be observed, a single actuator attached
diagonally between opposite corner nodes of the frame, as in cases 1–
3, has good authority over the first three modes of vibration. In each
of these cases the controllability parameters were all of reasonably
similar magnitudes. Rate parameter � varied between 0.1468 and
0.2726, and effort parameter � varied between 4.212 and 7.588. Note
that the nondiagonal terms in matrices A (aij for i ≠ j) were close
to unity.

D. Case 4 Actuator F2 to Control Four Modes

As mentioned already, the actuator positions in cases 1–3 should
have poor authority over the fourth mode of vibration. To
demonstrate this, actuatorF2, attached at corners nodes 7 and 13 as in
case 2, will be used to control four modes of vibrations (na � 1,
nm � 4, nr � 3, and nt � 7). One additional dummy actuator,
chosen between nodes 2 and 18 (location F5 in case 5 of Fig. 6b), is
included to write Eq. (8) in the following form:

Fa

Fd

" #
�

~Ba ~Br

Aa Ar

" #
Ua

Ur

" #

�

	3:249 	0:01304 	0:1868 811:7

	1:341 0:6895 	0:3246 	0:8639� 10	5

	2:097 	0:6688 	0:2668 	0:2854� 10	4

	1:378 	0:1394 	0:5702 811:7

2
66664

3
77775

u1

u2

u3

u4

2
66664

3
77775

�

F2

0

0

0

2
66664

3
77775 (58)

The constraint matrix [from the lower partition of (58)] is normalized
to

A�
1 1:242 0 0

0 1 	0:1379 0

0 0 1 	2296

2
4

3
5 (59)

Note that ja34j � 2296� 1, an indication of poor control over the
fourth mode. In fact, matrix (59) requires that u2 �	0:805u1,
u3 �	5:84u1, and u4 �	0:00254u1, indicating that the effort
assigned to the fourthmodal control is much lower than that assigned
to other modal controls.

Equation (11) for case 4 is unchanged from case 2 [see Eq. (49)]
because the matrix reflects changes in the actuator configuration
only; thus, it is written as follows:

Fa � F2 � �BaUa �	4:212u1 (60)

The controllability parameters from Eqs. (12a) and (12b) are

�� 393:2 �� 4:212 (61)

Rate parameter� has increased three orders ofmagnitude from case 2
[see Eq. (50)], indicating a large expected increase in attenuation
time. Effort parameter � remains unchanged (because the same
actuator location is used) between cases 2 and 4, which should be
reflected in similar expected maximum actuator forces.

The roots (rk ���k � i�k) of the characteristic equation from
Eq. (23) are

Fig. 9 Cases 1–3: optimal control forces (left) and DOF response (right).
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�1� 12:91 �2� 9:260 �3� 88:65 �4� 0:03663

�1� 27:51 �2� 112:6 �3� 218:7 �4� 461:0
(62)

The small value of �4 indicates that the fourth mode of vibration is
attenuated very slowly. The corresponding settling times are

teff1 �0:2711 s teff2 �0:3780 s teff3 �0:03948 s teff4 �95:56 s

(63)

Despite the poor attenuation of the fourth mode, the other three
modes are attenuated at the same rate as in case 2.

In Figs. 10a and 10b, the response of the frame’s DOF, d7x and d
24
y ,

are shown. The horizontal displacement d7x is only slightly affected
by the fourth mode due to its location in relation to the modal shape,
but the vertical displacement d24y is very sensitive to this mode and
clearly shows poor attenuation of the fourthmode (95.6 s is needed to
eliminate these oscillations).

The optimal actuation force histograms shown in Figs. 10c and
10d (note the different time scales) are now dominated by the fourth
mode. In fact, after about 0.5 s only vibrations with the fourth natural
frequency (�461:0 rad=s) persist. The maximum force required by
actuator F2 is about 330 N. Figure 10d confirms that the effective
settling time is about teff4 � 95:6 s.

In conclusion, as expected, when control by a single actuator
placed between the corner nodes over the fourthmode is attempted, a
large value of the rate parameter � indicates a nearly uncontrollable
system. To reduce its value (to the level characterizing the attenuation
rate when controlling only the first three modes of vibration, for
example), a new configuration of the actuator with better authority
over all controlled modes is needed.

E. Case 5 Actuator F4 to Control Four Modes

ActuatorF4, located between nodes 7 and 25, should intuitively be
better suited to control the frame’s four modes of vibration. This
configuration is only a slight alteration from case 4, with the lower
end of the actuator moved to a location two elements away from node
13.

Dummy actuators are chosen as F1, F2, and F3, and so Eq. (8)
takes the following form:

Fa

Fd

" #

�

	1:518 
10	3 	1:537�10	4 	6:282�10	4 	0:8944
	1:341 0:6895 	0:3246 5:472�10	3

	2:097 	0:6688 	0:2668 	0:02252
	1:870 0:1266 0:3838 	0:6715

2
66664

3
77775

�

u1

u2

u3

u4

2
66664

3
77775�

F4

0

0

0

2
66664

3
77775 (64)

The constraint matrix can be written in the normalized form as
follows:

A�
1 1:490

1 	0:1185
1 	0:9208

2
4

3
5 (65)

None of the terms in Eq. (65) is much greater than unity, and so the
effort assigned to each modal control is much more evenly
distributed than in case 4 [see Eq. (59)]. In fact, constraint matrix (65)
requires that u2 �	0:671u1, u3 �	5:662u1, and u4 �	6:149u1
(whereas, for case 4, u4 � 0:00254). The actuator force from
Eq. (11) is

Fa � F4 � �BaUa �	5:495u1 (66)

The controllability parameters from Eqs. (12a) and (12b) for case 5
are

�� 0:1626 �� 5:495 (67)

The rate indicator � has decreased three orders of magnitude in
comparison to case 4 [see Eq. (61)], to a valuemuch closer to unity. In
fact, this parameter has a value that would suggest the rate of
attenuation is somewhere in between that of cases 1 and 2; this is

Fig. 10 Case 4: a) response d7x; b) response d
24
y ; and c, d) actuation force F2.
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confirmed in Eqs. (68) and (69). The parameter � is close in value to
previous cases, and so themaximum forces should not be expected to
change greatly.

The roots of the characteristic equation, given by Eq. (23), are

�1 � 12:42 �2 � 7:484 �3 � 78:97 �4 � 87:77

�1 � 27:51 �2 � 112:5 �3 � 221:8 �4 � 457:8

(68)

None of the �i values is small [unlike �4 in Eq. (62)]; hence, the time
required to effectively attenuate each mode of vibration is relatively
short. The effective settling times are

teff1 �0:2817 s teff2 �0:4676 s teff3 �0:04432 s teff4 �0:03988 s

(69)

The settling times for the first three modes are close in value to case 4
[see Eq. (63)]; however, the fourthmode is nowquickly attenuated, in
about 0.04 s. Recall that this is achieved by relocating the lower end
attachment of actuator F2 from the corner node 13 to the inner node
25.

The displacements d7x andd
24
y are shown in Figs. 11a and 11b, and

the actuation forceF4 is shown in Fig. 11c. These plots contrast those
of case 4 (Fig. 10), in which the fourth mode was poorly controlled
(consequently, d24y was poorly attenuated). The maximum force
needed is about 240 N, and the disturbance is effectively eliminated
after teff2 � 0:4676 s.

F. Case 6 Actuators F2 and F5 to Control Three Modes

Two actuators are to control the frame’s first three modes of
vibration (na � 2, nm � 3, nr � 1, and nt � 4). Actuator F2 is
located as in case 2, and a second actuator F5 is located between
nodes 2 and 18. With actuator F1 as a dummy, Eq. (8) becomes

Fa

Fd

" #

�
	5:968 � 107 	1:903 � 107 	7:593 � 106

	5:968 � 107 	1:903 � 107 	7:593 � 106

	0:7019 0:8942 	0:2433

2
64

3
75

u1

u2

u3

2
64

3
75

�
F2

F5

0

2
64

3
75 (70)

The normalized constraint matrix (10) is

A� � 1 	1:274 0:3466 � (71)

No element in this row matrix is significantly greater than unity,
suggesting that reasonable attenuation rates are expected.

The actuation forces F2 and F5, as defined by Eq. (11), are

Fa � �BaUa �
	37; 769; 742 	46; 942; 466
	37; 769; 738 	46; 942; 463

� �
u1
u2

� �
� F2

F5

� �
(72)

Now matrix �Ba contains terms of large magnitudes, indicating that
the modal controls will produce large actuation forces. Eight

significant digits are shown in Eq. (72) to verify that matrix �Ba is
nearly, but not exactly, singular.

For case 6, the control parameters from Eqs. (12a) and (12b) are

�� 0:3466 �� 74:46 � 106 (73)

Rate parameter � has a value closer to unity than any previous cases,
and so the attenuation rate of the slowest mode should be expected to
increase; this is confirmed in Eqs. (74) and (75). However, effort
parameter � is seven orders of magnitude larger than previous cases,
indicating that the maximum expected forces will greatly increase
(see Fig. 12c).

The roots of the characteristic equation (rk ���k � i�k) given
by Eq. (23) are

�1 � 18:14 �2 � 26:09 �3 � 132:6

�1 � 27:07 �2 � 114:6 �3 � 213:5 (74)

This set of decay coefficients �i confirm that vibrations are
attenuated within a reasonable time; the settling times for particular
modes are

teff1 � 0:1929 s teff2 � 0:1342 s teff3 � 0:02640 s (75)

The histograms of DOF d27x and d24y are shown in Figs. 12a and 12b,
and actuation forces F2 and F5 are plotted Fig. 12c. Vibrations are
attenuated more quickly than in cases 1–5 (teff1 � 0:1929 s), but the
maximum forces required during the control period are about 2 GN,
greater by seven orders of magnitude than in previous cases. The
action of both actuators is indistinguishable in Fig. 12c, but they are
indeed different. In fact, the difference between actuation forces,
F2–F5 shown in Fig. 12d, is somewhat similar to the action of F2 in
case 2 (Fig. 9b). Despite the large forces (�2GN) generated by each
individual actuator, the magnitude of �F2–F5�max � 92 N is
comparable to Fmax

2 � 121 N.
The cause of uncharacteristically large forces in case 6 can be

traced to the fact that the increase (decrease) in the distance between
nodes 2 and 18 is nearly identical to the decrease (increase) in the
distance between nodes 7 and 13 when the frame vibrates in the first
and second modes (see Fig. 6b). Therefore, actuator F5 essentially
neutralizes the action of F2 toward vibration attenuation instead of
“helping” it. This, in turn, causes force F2 to increase, followed by
increasing F5, and so on. Clearly, one of the actuators at these
locations should be considered redundant.

In general, any case of redundant actuators, reflected in excessive
actuation forces, will automatically produce a very large value of the
effort parameter � in Eq. (12b) (compare �� 74:46 � 106 for case 6
with �� 4:212 for case 2).

Fig. 11 Case 5: a) response d7x , b) response d
24
y , and c) actuation force F4.
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G. Case 7 Actuators F2 and F3 to Control Three Modes

In case 7, a better (nonredundant) position of the second actuator to
help actuatorF2 control thefirst threemodes is considered. Actuators
F2 and F3 from cases 2 and 3 (na � 2, nm � 3, nr � 1, and nt � 4)
are combined.WithF1 chosen as a dummy actuator, Eq. (8) becomes

Fa
Fd

� �
�
	1:871 0:1265 0:3834
	2:097 	0:6688 	0:2668
	1:341 0:6895 	0:3246

2
4

3
5 u1

u2
u3

2
4

3
5� F2

F3

0

2
4

3
5
(76)

The normalized constraint matrix (10) is

A� � 1 	0:5143 0:2421 � (77)

The elements of this matrix suggest adequate control over all three
modes.

Actuation forces F2 and F3 in form (11) are

Fa � �BaUa �
	3:455 0:9408
	0:9950 	1:235

� �
u1
u2

� �
� F2

F3

� �
(78)

The controllability parameters from Eqs. (12a) and (12b) are

�� 0:2421 �� 5:203 (79)

The rate parameter is similar to that in case 6, whereas the effort
parameter � is similar to that in cases 1–5, and so the expected
attenuation times should be comparable with case 6 and the
magnitude of actuation forces with cases 1–5.

Fig. 12 Case 6: a) response d27x , b) response d24y , c) actuation force F2, and d) actuation forces F2–F5.

Fig. 13 Case 7: a) response d27x , b) response d24y , c) actuation force F2, and d) actuation force F3.
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The roots of the characteristic equation (rk ���k � i�k), given
by Eq. (23), are

�1 � 16:77 �2 � 45:28 �3 � 114:9

�1 � 27:28 �2 � 115:9 �3 � 212:7 (80)

The effective settling times are

teff1 � 0:2087 s teff2 � 0:07730 s teff3 � 0:03046 s (81)

The disturbance is eliminated altogether in about 0.21 s, versus 0.19 s
for case 6. Note that the combination of F2 and F3 can attenuate it
faster than either actuator individually because 0.38 s was needed in
case 2 and 0.33 s in case 3. The histograms of DOF d27x and d24y are
shown in Figs. 13a and 13b, and actuation forcesF2 andF3 are shown
in Figs. 13c and 13d.

Unlike case 6, this configuration of actuators requires smaller
forces than the actuation forces in either case 2 or 3. In fact, the
maximum force in each actuator is Fmax

2 � 70 N and Fmax
3 � 76 N,

their sum being only slightly greater than the maximum force for
case 2 (121 N) or 3 (131 N).

Note that if the fourth mode was considered in cases 6 or 7, then
similar to case 4 a very large value of parameter �would be obtained
to reflect slow attenuation of the fourth mode. However, matrix �Ba
would not be affected because there was no change in the actuator
configuration.

VII. Conclusions

A procedure for analyzing and simulating active optimal vibration
control of underactuated elastic structural systems is presented.
Underactuation brings about certain constraints that the systemmust
obey. These constraints, which are formulated using dummy actu-
ators, are nonintegrable (nonholonomic) in terms of the modal
variables (or the system’s degrees of freedom) but algebraic (holo-
nomic) in terms of the modal controls. The algebraic form of the
modal controls’ constraints can be used to formulate the normalized
constraint matrix and the pseudotransfer matrix. These twomatrices,
which are determined in the early phase of the analysis, depend only
on the placement of the actuators and therefore define the system’s
controllability. The attenuation rate and effort parameters, which
are derived from the matrices herein, can be used to compare
controllability of a system with different configurations of actuators.

The solution procedure combines the use of the FE and symbolic
mathematics standard software to analyze and simulate the entire
control process, including the actuation and the response histograms.
As the examples demonstrate, a poor placement of actuators leading
to an excessively long attenuation time of a particular mode is indi-
cated by large numerical values of some coefficients of the constraint
matrix or a large value of the rate parameter. In turn, large values of
coefficients in the pseudotransfer matrix or a large value of the effort
parameter signal redundant actuators, resulting in excessively large
actuation forces. The aforementioned properties of the constraint and
pseudotransfer matrices, or the controllability parameters, may be
used for a preliminary assessment of the actuation setup, which can
be done within the problem’s structural analysis phase (and using
only the FE software), without actually entering the control phase
(i.e., without using the symbolic operations that require the math-
ematical software).

Appendix: Comments on Calculating
Integration Constants

The relatively large number of integration constants required to
determine the optimality equations’ solutions in the form (28) is the
consequence of additional differentiation operations [additional to
the original operations already present in Eqs. (18) and (19)] that

were performed to obtain the polynomial operator ~E. Therefore,
Eq. (23) is of relatively high order and, when integrated, an identical
number of additional integration constants are created. It should

noted that Eqs. (23) and solutions (28) with all the numerical values
of constants are automatically generated in MAPLE.

In Eqs. (28), there are 2�nm�2 constants defining nm modal
variables �j, and 2nmnc constants defining nc Lagrange multipliers
vj. Because only 2nm initial conditions (disturbances) can be as-
sumed, the remaining 2nm�nt 	 1� constants must be found by
comparing terms in Eqs. (18) and (19). Note that factoring out 2nm
solving functions in Eqs. (19) provides 2nmnc linear equations with
2�nm�2 constants c1kj; c

2
kj related only to �j, which when supple-

mented by 2nm initial conditions provide 2nm�nc � 1� equations.
When nc � nm 	 1, or na � 1 (one actuator is to control several
modes), the equations with the constants related to the modal
variables can be solved independently of the constants related to the
Lagrange multipliers. Because the latter constants are not used in the
subsequent analysis, the numerical effort can be reduced by not
calculating them at all (the left-out constants may be obtained from
Eq. (18) if required). Otherwise, if multiple actuators are employed,
all constants are interdependent and must be calculated simul-
taneously from Eqs. (18) and (19).

For the case of a single actuator (na � 1) in example I the
integration constants defining the modal variables �1 and �2 can be
found independently (without solving for the constants related to v1).
These eight constants are determined from the set of four homo-
geneous equations (37) and four initial conditions (31a) and (31b).
The following numerical values were obtained for the integration
constants:

c111 � 18:41 � 10	3 c112 �	6:208 � 10	3

c211 � 74:96 � 10	3 c212 �	:5594 � 10	3

c121 � 3:262 � 10	3 c122 � 6:624 � 10	3

c221 �	2:748 � 10	3 c222 � 21:18 � 10	3

(A1)

The integration constants for the function v1 are not shown, as they
have no interpretive value in analyzing the suspension problem.

For the frame problem in example II, the solution of Eqs. (45a) and
(45b) involves five functions ��1; �2; �3; 	1; 	2�, in the form (28),
each containing six independent terms and six unknown integration
constants, for a total of 30 (2nmnt) unknown constants. Substituting
the solution functions into any four of the five equations in the set of
Eqs. (45a) and (45b) and grouping similar terms renders sets of six
algebraic equations for each differential equation, yielding 24 (four
sets of six) algebraic equations all together. With the six boundary
conditions (39), a total of 30 linear algebraic equations involving 30
unknown integration constants are obtained.
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